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Abstract

In this paper, we investigate how underlying relevant technological conditions induce distinguishable patterns of change
in industry structure and evolution. A mapping is detected between the specific nature of problem decompositions and
research techniques at the micro level of knowledge bases, and patterns of structural evolution at the macro level of the
industry network. The graph-theoretic techniques we introduce map major technological discontinuities on changes observed
at the level of dominant organization forms. They might have applications in other domains, whenever the identification of
structural breaks and homological relationships between technological and industrial spaces are important issues. q 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Networks of collaborative relationships among
firms and other institutions are widely recognized as
an important organization form of innovative activi-
ties.

One can find in the literature widely different
interpretations of the nature, motivations, structure
and functions of networks, ranging from more socio-
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logically oriented approaches to economic explana-
Ž .tions based on various mixes of alternative theoret-

ical backgrounds, e.g. transaction costs, contract the-
ories, game theory, competence-based accounts of
firms and organizations.

These interpretations generate widely different
predictions about the evolution of collaborative rela-
tionships over time.

However, most of these approaches and explana-
tions seem to agree in principle that, especially in
high-growth, technology-intensive industries, net-
works of collaborative relationships should be con-
sidered and analyzed as organizational devices for
the coordination of heterogeneous learning processes
by agents characterized by different skills, competen-
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Žcies, access to information and assets see Pisano,
1991; Barley et al., 1992; Arora and Gambardella,

.1994; Powell et al., 1996; Walker et al., 1997 .
Beyond a rather generic agreement, though, the

existing literature on networks does not address in
detail the nature and specific properties of relevant
knowledge bases and search activities to be used as

Ž .explanatory constructs see Dosi, 1982, 1988 .
Against this background, this paper aims to estab-

lish a closer connection between the structure and
evolution of scientificrtechnological knowledge and
the structure and evolution of organization forms in
innovative activities. More precisely, we deal with
the relationships between some fundamental at-
tributes of the evolution of relevant knowledge bases
in pharmaceutical R&D and relevant properties of
the structure and evolution of the industry network.

Our findings strongly suggest that a mapping is in
place between the specific nature of problem decom-
positions and research techniques observed at the
micro level of knowledge and technology dynamics
and the patterns of structural evolution detected at
the macro level of the industry network.

Our empirical analysis of network evolution relies
on graph theoretical tools and measures to investi-
gate an extensive data set that covers more than 5000
collaborative agreements among around 2000
firmsrinstitutions from 1978 to 1997.

The mathematical language provided by the the-
ory of directed graphs enables us to show how the
nature and evolution of underlying relevant techno-
logical conditions induce distinguishable patterns of
change at the level of industry structure and evolu-
tion. A set of indicators is developed, which turn out
to be very useful to unravel the complex properties
of empirical objects such diverse as technological
and industrial structures.

The paper is organized as follows.
Section 2 briefly highlights the nature and goals

of some fundamental research heuristics and tech-
niques developed by firms and institutions in the last
20 years in their efforts to discover and develop new
effective drugs. A fundamental distinction is cap-
tured, between co-specialized and transversal re-
search technologiesrstrategies. That is, between re-
search hypotheses and techniques that tend to be
specific to particular domains and research tech-
niques that are generic and, at the same time, com-

plement co-specialized hypotheses and techniques in
the course of research activities.

In Section 3, we highlight some implications of
the nature of these heuristics and research strategies
on the organization of innovative activities and on
patterns of evolution of the network of R&D collab-
orative relationships.

In Section 4, we turn to the empirical analysis of
the evolution of the network. Graph theory and
numerical representations of networks are intro-
duced, coming to show the existence of a striking
homomorphic relationship with the structure and
evolution of most recurrent research hypotheses
and techniques used in problem solving activities.
We refer to the notion of Canonical Decomposition
of a graph in order to disentangle two major
driversrcomponents of the structural evolution of
the net, i.e., co-specialized and transversal actors that
rely on co-specialized and transversal research tech-
niques.

The presentation of the main findings and the
discussion of some implications for the analysis of
organization and industrial dynamics close the paper.

2. The growth of scientific and technological
knowledge in pharmaceutical R&D

The last 25 years have witnessed a revolution in
biological sciences, with significant basic advances
in molecular biology, cell biology, biochemistry,
protein and peptide chemistry, physiology, phar-
macology, and other relevant scientific disciplines.
The application of these new bodies of knowledge to
pharmaceutical industry has had an enormous impact
on the nature of R&D activities, on organizational
capabilities required to introduce new drugs, and on

Žpatterns of industry evolution see Galambos and
.Sturchio, 1996; Henderson et al., 1999 .

In fact, the so-called AmolecularizationB of phys-
iology, pathology and pharmacology, corresponds to
a principle according to which for the development
of new powerful and selective drugs search has to
penetrate deeply into the human organism to unravel
the biochemical interactions at the cellular, infra-cel-
lular and, most importantly, molecular levels.



( )L. Orsenigo et al.rResearch Policy 30 2001 485–508 487

According to the molecular biology paradigm, the
Ž .route to understanding of human organism nature is

through the dissection of the system in its constituent
parts, followed by the study of these parts. The
properties of the whole — and hence its behavior —
are the sum of the properties of the parts, while
pathologies are analyzed in terms of specific alter-
ations of the molecules that constitute the human
organism. This philosophy has had profound effect
on the methods of inquiry, leading scientists to pur-
sue the pattern: Astudy: dissect, identify, classify,

Ž .and dissect furtherB Testa and Meyer, 1995, p. 6 .
In this perspective, the development of new drugs

rests on the ability to generate more fundamental
Ž .general theories, which yield an increasingly Ade-
eperB explanation of processes that take place at
higher levels of organization of matter inside the
human organism.

Notably, with reference to the range of possibili-
ties for therapeutic intervention, the convergence at
the level of scientific explanations generated by the
progress of fundamental knowledge corresponds to
the identification of longer and more complex chains
of causal events. In fact, for almost all the more
complex pathologies, the inner dynamics of knowl-
edge has been leading to a proliferation of a priori
hypotheses on plausible research trajectories. Whilst
new scientific explanations and discoveries can lead
to deeper knowledge and, moreover, more funda-
mental explanations of the nature of processes that
happen in the human organism can focus search at a
given level of analysis, the very same achievements
generate new hierarchies of sub-hypotheses.

This dynamics creates a dilemma: by definition,
theories that are more fundamental explain more;
simultaneously, they multiply the number of points
of entry for the discovery and the development of
new therapeutic treatments.

In other words, the very process of convergence
at the level of scientific explanations can lead to a
process of divergence in research strategies gener-
ated along the hierarchy of increasingly specific
sub-hypotheses, with an increase in the number of
alternative routes for intervening in the disease pro-
cess.

To put it differently, scientific progress certainly
AsimplifiesB the search space, eliminating certain

Žalternatives that are proven to be wrong Nelson,

.1959; Arrow, 1962; David et al., 1992 . However, at
the same time, scientific discoveries generate a Ade-
formationB and an expansion of the research space,
by suggesting new competing hierarchies of sub-hy-
potheses, as well as previously unconceivable oppor-
tunities of discovery. Moreover, many research tech-
niques and biological targets tend to be typically
characterized by high degrees of co-specialization.
That is to say, research techniques tend to be rela-
tively specific to particular fields of application.
Thus, a proliferation is induced in the number of
trajectories, techniques, and ex ante conceivable ex-
ploration strategies.

Moreover, technologies such as genomics, gene
sequencing, transgenic animals, have started to sup-
ply the industry with a huge number of novel biolog-
ical targets thought to be relevant to a vast array of
diseases defined at the molecular level, and develop-
ing highly sensitive assays incorporating these tar-
gets.

The substantial growth of biological knowledge
on the human organism at the cellular, molecular and
genetic levels notwithstanding, the discovery and
development of drugs has continued to be a lengthy,
expensive and often unsuccessful process. Within
this context, the increasing number of plausible tar-
gets has generated severe bottlenecks in the drug
discovery process, due to the difficulty of quickly
and cheaply analyzing function and disease rele-
vance of newly discovered targets and matching

Ž .related compounds see Vos, 1991 .
Against this background, one of increasing costs

and bottlenecks, during the 1980s and 1990s new
developments in solution phase and solid phase
chemistries, high throughput screening technologies
Ž .HTS , information technologies, and combinatorial
chemistry have led to the development of a set of
research technologies that allow to achieve a higher
breadth of applications, measured in terms of the
number of disease areas and biological targets to
which the technology may be applied.

In particular, while several thousand genetic tar-
gets could not have been addressed with the methods
of conventional medicinal chemistry, the develop-
ment of combinatorial chemistry libraries, together
with new techniques for high-throughput screening
and ever-improving bio-informatics tools, has gradu-
ally made it possible to test a large number of
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potential drug targets against an even larger number
of chemical entities.1

More generally, during the 1990s, a set of generic
research technologies has been developed: from PCR,
to protein structure modeling, rapid computer based
drug assay and testing, recombinant chemistry tech-
niques, drug delivery systems, chemical separation
and purification techniques, that allow researchers to
screen thousands of potentially promising com-
pounds.

In short, the recent evolution of research strate-
gies and heuristics in pharmaceutical R&D can be
characterized by discerning between two main search
regimes, that have started to coexist within the indus-
try. The first regime is essentially based on biologi-
cal hypotheses and molecules that tend to be specific

Žto given fields of application co-specialized tech-
.nologies , while the second regime is characterized

Žby the emergence of new generic tools transversal
.technologies .

In the case of co-specialized research hypotheses
and molecules, the characterization of biological tar-
gets and the corresponding designrexperimentation
of each new drug tend to require individual analysis.
Lessons learned from the design and experimentation
of one biological hypothesisrmolecule cannot be
immediately transferred to other biological domains,
in order to develop other classes of drugs. Con-
versely, transversal technologies are in principle ap-
plicable to multiple biological targets and diseases.

However, pharmaceutical R&D Adeals with a
system — the human body — far more complicated
than any mechanical or electronic systemB
Ž .Gambardella, 1995, p. 16 . For this reason, co-spe-

1 Combinatorial chemistry enables rapid and systematic assem-
bling of a variety of molecular entities, or building blocks, in
many different combinations to create tens of thousands of diverse
compounds that can be tested in drug discovery screening assays
to identify potential lead compounds. Large libraries are available
to be tested against both established and novel targets to yield
potential lead compounds for new medicines. Such vast numbers
of compounds have been introducing a substantial challenge to the
drug discovery process and have created a need for faster and

Ž .more efficient screening. High throughput screening HTS meth-
ods make it possible to screen vast populations of compounds via
automated instrumentation: that is, complex workstations capable
of performing several functions with the help of mechanical arms
or simpler automated dilution devices.

cialized hypotheses and transversal techniques stay
coupled to each other, in the context of research
projects and development activities carried out under
conditions of strong uncertainty.2

3. From growth of knowledge to network dynam-
ics

So far, we have identified some properties of the
processes of scientific discovery underpinning re-
search activities in the pharmaceutical industry. An
extensive literature has documented some of the
consequences that the advent of molecular biology
has produced on the organization of innovative activ-
ities, both at the firm level and at the industry level
ŽOrsenigo, 1989; Henderson, 1994; Gambardella,
1995; Mc Kelvey, 1995; Galambos and Sturchio,

.1996 . In particular, it has been emphasized that the
emergence of a dense network of collaborative rela-
tionships among firms of different types and other
research institutions has been a major feature of the

Žrecent evolution of the pharmaceutical industry see
.Powell, 1996; Powell et al., 1996 .

In this section, we examine in more detail if and
how the specific properties of the processes of scien-
tific discovery in molecular biology have been influ-
encing patterns of evolution of the network of col-
laborative relationships. Our main claim is that these
basic properties ought to be preserved in the dynam-
ics of the network, if such a form of organization of

Ž .innovative activities has at least partly to be under-
stood as an adaptive response to the structural cogni-
tive features of the dynamics of research activities.
That is, if the specific properties of learning pro-
cesses influence and constrain the possible forms of
organization of innovative activities.

2 For example, new technologies including high throughput
methods for sequencing genes, for monitoring and comparing their
expression in different situations, and following their inheritance
in families prone to particular diseases, depend crucially on the
integration of molecular biology with robotics, and analytical
instrumentation. The integration of these disciplines has started to
provide powerful capabilities for generating and analyzing large
volumes of data about genes and their expression, making it
possible for the first time to mount a systematic search effort to
discover and characterize the genes and biochemical pathways
which underlie human diseases.
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Let us briefly summarize the basic properties of
the dynamics of knowledge discussed in the previous
section. First, a process of fast expansion of biologi-
cal knowledge in the fields of biochemistry, physiol-
ogy and pathology has been surging within the in-
dustry. Secondly, such growth of knowledge has
taken the form of a specification process, in which a
general hypothesis gives origin to a variety of sub-
hypotheses that, in turn, develop other sub-hypothe-
ses at lower levels of generality, and so on. Third, as
a consequence, the structure of knowledge comes to

Ž .have a distinct hierarchical nature see Simon, 1969 .
Fourth, the overall process is highly cumulative,
since it is based on a dynamics that introduces
progressive specifications of biological hypotheses at
each level of the hierarchy. Fifth, this dynamics of
knowledge imposes a specific structure on the degree
of stability of hypotheses. At higher levels of the
hierarchy, hypotheses tend to stay relatively stable,
since their falsification occurs over a relatively long
time scale, being based on the falsificationrselection
of hypotheses at lower levels of generality. Sixth,
during the 1990s the appearance of general purpose
technologies for the production and screening of new
molecular structures has introduced a new dimension
in the evolution of the relevant knowledge bases.

According to our conjectures, these basic proper-
ties ought to be reflected in the network of collabora-
tive relationships. We address only indirectly the
question why collaborative agreements have become
such an important form of organization of innovative
activities. This would imply the specification of a
fully fledged model of how cognitive structures in-
fluence organization forms. We advance some rather
specific hypotheses on how the structure of the
network should look like and treat the empirical
evidence as a sort of reduced form of a well-speci-
fied structural model.

It is important to notice that the task of specifying
the linkages between the properties of the dynamics
of knowledge and the structural evolution of the
network is somewhat facilitated by the very special
nature of the pharmaceutical–biotechnology indus-
try, as a strongly science-based sector. Differently
from other industries or technologies, in this case

Ž .scientific research has had and continues to have a
direct and immediate relevance for innovative activi-
ties. The proliferation of new companies specialized

in the production of new techniques and products
directly derived by cutting edge academic scientific
research and the development of a dense network of
collaborative relations among firms are — as it is
well known — prominent features of the industry.

In the following empirical analysis, a research
hypothesis is associated to a specific R&D project
embedded in a firmrinstitution. Every firmrinstitu-
tion is defined by the collection of its research
projects, while agreements are conceived as organi-
zational devices through which hypothesesrtech-
niques are combined and in which an Originator can

Žbe distinguished from a DeÕeloper see Appendix
.A .
On these bases, we can advance the following

testable ApredictionsB.
First, as projects correspond to research hypothe-

sesrtechniques, and provided that the latter prolifer-
ate over time, originated by an increasing number of
firms, we would expect an expansion of the network
over time. This growth may take place both through
the entry of new firms and by means of an increase
in the number of agreements between existing agents.
Secondly, the hierarchical structure of growth of
knowledge should result in a process of hierarchiza-
tion of the network, with the emergence of a core of
firmsrinstitutions who are able to manage general
hypothesesrprojects. Third, given the cumulative na-

Ž .ture of the growth of knowledge, earlier later en-
trants in the network should embody more general

Ž .and stable specific and unstable hypotheses. Thus,
we would expect to observe the development of a
stable core in the network — composed mainly by
earlier entrants — linking with an expanding turbu-
lent fringe of later, more co-specialized, entrants.
Fourth, this structure would be perturbed by the
entry of new agents embodying either new AgeneralB
hypothesis, a wide portfolio of specialized tech-
niques, or AtransversalB techniques. In such a cir-
cumstance, one would observe a reduction of the
degree of hierarchization of the network. In fact,
these agents should be in principle able to link with
many other actors and — in the case of transversal
techniques — they would induce a shift in the
profile of relationships between earlier and later
entrants.

Please note that we are not making any assump-
tions about the role of firm size, degree of diversifi-
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cation and propensity to enter into collaborative rela-
tionships. These are clearly important firms charac-
teristics that ought to be controlled for and that
might induce dynamic patterns in the network simi-
lar to those described above. We shall discuss these
issues in the concluding section.

The importance of the technological determinants
of the structural evolution of the network of collabo-
rative agreements can be appreciated, at a first glance,
by looking at Fig. 1. Fig. 1 is based on a 3D
graphical representation of the network by means of
level curves. Columns correspond to the x-axis
Ž . Ž .Originators , while rows to the y-axis DeÕelopers .

Ž .Levels z x, y sb indicate the cumulated numberi j

of agreements between firms i and j, classified

Fig. 1. Technological waves within the network.

according to year of entry into the network, with
darker regions representing areas of higher relational
intensity.

Ž .Fig. 1 shows that: i Originators have entered
the network by introducing successive waves of new
research technologies, which shape the overall evolu-

Ž .tion of the network; ii Firms already active within
the network have not played a major role as Origina-
tors in the new technological trajectories that have

Ž .emerged after their entry; iii Rather, earlier entrants
have gained access to the new technological trajecto-

Ž .ries mainly as DeÕelopers. iv As times goes by, the
rate of entry in any given technological trajectory
has been slowing down. That is to say, entrants have
been closely linked to the generation of new techno-
logical trajectories.

All in all, evidences on patterns of entry, on
Žrelational roles of earlier and later entrants Origina-

.torsrDeÕelopers and, finally, on new technological
waves, suggest the existence of a dynamic process
with the following properties. Major new technologi-
cal breakthroughs initially induce the entry of new
FirmsrInstitutions, which act as specialized technol-
ogy Originators. As times goes by, DeÕelopers suc-
ceed in developing internal capabilities in the new
fields. Correspondingly, relational intensity, as well
as flows of entry, shift forward to new technologies
and firms.

Ž .v After 1992, the emergence of transÕersal
technologies like combinatorial chemistry has been
perturbing the structure of the network. New entrants
based on the new technological platforms and acting
as Originators have been establishing relations with
a large variety of FirmsrInstitutions, irrespective of
age.

4. The evolution of the industry network

This section analyzes in detail the transformations
occurred in the organization of innovative activities
within the international pharmaceutical industry from
1978 to 1997.

Several graph theoretical measures are applied to
investigate the evolution of the inter-organizational
R&D activity that has characterized the pharmaceu-
tical industry after the emergence of molecular biol-
ogy.
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The analysis is based on a unique data set built at
the University of Siene by integrating several fonts.
In particular, we merged a proprietary database on
more than 14,000 pharmaceutical R&D projects with
information about collaborative agreements drawn
from a handful of well-known sector-specific

Ž .databases Bioscan, Recombinant Capital, IBI . Fi-
nally, we updated the resulting database by referring

Ž .to annual reports SEC files , and specialized press
Ž .Scrip, Spectrum .

The collaboratiÕe agreement data set considered
for this paper covers 5056 agreements and 9785
research projects carried out by 2297 firms and

Ž .institutions Fr Is from now on . Among them, 651
units have been classified as AIncumbent FirmsB
Ž .INC: firms founded before 1973 ; 1372 units have
been classified as ANew Biotechnology FirmsB
Ž .NBF: firms founded after 1973 and 274 units have

Žbeen considered to be AInstitutionsB INST : Univer-
sities, Hospitals, PublicrPrivate Research Institu-

.tions . Mergers and Acquisitions have been taken
into account by collapsing information relative to
firms engaged in consolidation deals starting from
the date of subscription.3 As for collaborative agree-
ments, the data set provides detailed information on
typology, technological content, and date of signing.4

Table 1 synthesizes the broad characteristics of the
overall dataset.

Starting from the complete database, the subset
consisting only of the R&D agreements has been
selected. A total of 3973 agreements signed by 1709
FrIs have been extracted. The R&D agreement
data set contains information on 349 INCs, 1112
NBFs and 248 INSTs.

Table 2 classifies agreements according to stage
of signing. Interestingly, more than 88% out of the
total number of collaborations were subscribed be-
fore the starting of the development stage. Further-
more, more than 76% of the total number of R&D
agreements include a licensing contract.

In Appendix A the network of R&D collaborative
agreements is rigorously defined in graph theoretical

3 It is worth nothing that M&A activities strongly contributed
to the process of hierarchization of the net.

4 Every agreement may include different contract typologies at
the same time. The information on the technological content is
available for every agreement.

Table 1
The collaborative agreement data set

Type of contracts Technology

License 3039 Miscellanea 958
Research 1359 Drug Delivery 650
Development 1641 Monoclonals 489
Equity 860 Screening 463
Collaboration 818 Recombinant DNA 405
Supply 453 Synthetics 364
Option 445 Oligonucleotides 348
Distribution 388 Combinatorial Chem. 217
MarketingrPromotion 326 Gene Sequencing 207
M and A 321 Gene Expression 193
Joint Venture 226 Rational Drug Design 127
Asset Purchase 186 Transcription Factors 107
Manufacturing 169 Cell Therapy S.C.F. 103
Warrant 108 Phototherapy 36
Loan 93 No Information 389
n.a. 26 Total 5056

terms, and the formal apparatus required for the
analysis of its structural evolution is highlighted. In
particular, the overall network is referred to as a

Ž .digraph Harary et al., 1975 . More specifically, the
digraph is identified according to a time orientation.
That is to say, for any given R&D project, we

Ž .distinguish the FrI that acts as the Originator o
Ž .from the one that acts as the DeÕeloper d . In

addition, the digraph has been ordered on the basis
of time of FrI entry within the network. To put it

Ž .differently, each node FrI of the graph has been
labeled by the date of signing of its first agreement.

Two distinct time dimensions have been identi-
Žfied: the first one is defined at a micro level the

distinction between project Originator and project
.DeÕeloper ; the second is singled out at a macro

Žlevel the emergence of the overall industry network
.as a product of FrIs entry and new agreements .

In what follows, the digraph is analyzed, in order
to explain its main structural properties in terms of
determinants of structural inertia and persistence, and
drivers of structural instability and change. To ac-
complish this goal, the following four major steps
will be undertaken in the following sections.

Ž .1 Some generic properties of the evolution of
the graph are analyzed. In particular, we observe that
the graph expands almost exponentially over time
and that such growth is essentially driven by the
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Table 2
Classification of R&D agreements according to stage of signing

Phase %

Discovery 47.08
Lead molecule 17.09
Formulation 15.89
Preclinical 8.49
Clinical I 3.72
Clinical II 4.74
Clinical III 2.99

entry of new firmsrinstitutions, while the density of
the graph slightly decreases.

Ž .2 Some permanent structural properties of the
digraph are identified. Despite the steady rate of
growth of the overall network, we find high levels of
structural stability, both in terms of degree of asym-
metry, intransitiveness, and hierarchization. More-
over, the digraph is shown to be Atime reverseB, as
time order and time orientation are inversely re-
lated.

Ž .3 The degree and sources of structural instability
within the graph are investigated. As a reference

Ž .point a sort of null hypothesis , we start hypothesiz-
ing a conservative process being in place. At any
point in time, such an inertial process would repro-
duce the same invariant structural properties. If such
a process captured the dynamics of the network, one
would have observed a smooth structural change,
despite the intense growth of the network. In particu-
lar, given that the growth of the network is driven by
flows of entry, structural inertia would be the effect
of a cumulative, incremental technological dynamics.
Moreover, given the time reversal phenomenon we
mentioned above, it would be possible to locate the
source of structural stability at the level of the
process driving the entry of new Originators.

However, the empirical analysis carried out in
order to test the structural inertia hypothesis has
revealed two major sources of departure from such a
conservative process. On the one hand, a strong first
moÕer adÕantage is observed for firms that entered
the network before 1981. On the other hand, some
important destructuring patterns are identified for
the years following the peak of entry of 1992.

Ž .4 The departures from the structural inertia hy-
pothesis are examined using the notion of Canonical

ŽDecomposition of a bipartite graph Dulmage and

.Mendelsohn, 1958, 1959 , which allows us to cate-
gorize FrIs according to the role they play in the
dynamics of the network. Two groups of subjects are
identified; a group of FrIs, which interact locally
with given types of partners, and another group
whose interactions are de-localized, i.e. are not re-
stricted to a particular category of partners. What is
even more interesting, is that FrIs belonging to any
one of these two categories are immediately identifi-
able by the nature of the competencies they embody.
The formers are active in those technological sub-
fields that are recognized to be co-specialized, while
the others are active in transversal technologies.

In synthesis, our empirical analysis reveals that
major changes in the network structure take place in
correspondence with major shifts occurring at the
level of the underlying scientific and technological
bases.

In order to identify such a relation, we have built
an original formal apparatus for the representation of
the structural evolution of a network of interacting
agents.

4.1. Growth of the network and patterns of entry

For the period from 1985 to 1997, Fig. 2 shows
the number of firms founded per year, the number of
R&D projects startedrended per month and, finally,
the 1-year moving average of monthly-subscribed
R&D agreements. Over time, the number of ties
grows approximately in proportion to the number of
firms within the network. As a consequence, we
observe a steady decrease in the density of the net,
which moves from about 1% at the beginning of the
1980s to less than 0.15% in 1997. The analysis of

Fig. 2. Entrants, R&D projects, and R&D agreements.
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patterns of firms’ entry in pharmaceutical industry
reveals the existence of two peaks in 1988 and 1992.
Both R&D projects and collaboratiÕe agreements
are driÕen by flows of entry, with an average time
lag of, respectively, 2 and 3 years. It is worth
noticing that the number of collaborative agreements
parallels the number of R&D projects over the
whole period until 1992. Starting from 1992, two
different patterns are detectable. From 1992 to 1994,
it is possible to observe a higher growth in the
number of R&D projects as compared to that of
agreements on the contrary, since 1994 an opposite
pattern has started to be in place.

4.2. Structural properties of the graph

The network of agreements at time t is repre-
Ž .sented as a digraph G E,V , whose vertices V andt

edges E consist, respectively, of FrIs active in
Ž .pharmaceutical research and development V and of
Ž .R&D formal collaborations among them E , drawn

up by time t .The digraph G can be represented byt
Ž . w xan adjacency matrix G m A G s a . Matrixt t do t

Ž .entry a is equal to 1 if an edge e d,o does existdo

at time t, while a is equal to 0 otherwise. Matrixdo
Ž .rows consist of all the vertices V DeÕelopers ,d

while matrix columns consist of all the vertices Vo
Ž .Originators . Thus, rows and columns vectors de-
fine, respectively, the sets of projects for which each
FrI has acted respectively as an Originator and a
Developer until time t.

Ž . Ž .dDegree i,t and oDegree i,t of vertex i at time
t are given by the sums of matrix entries over row

Ž .and column i. The total Degree i,t equals the sum
of dDegree and oDegree.

As we have already pointed out, the set of ver-
tices can be ordered according to time of entry into
the network. Consequently, it is possible to permute
the adjacency matrix in order to obtain a matrix
Ž . w x � 4A G s a , where d g 1, . . . ,n , o gF t do F t

� 4 � Ž . Ž . Ž .1, . . . , m , with ´ 1 F . . . F´ d F . . . F´ n
4 � Ž . Ž . Ž . 4F t , and ´ 1 F . . . F´ o F . . . F´ m F t ,

where ´ is the month of entry into the network.
Ž .Afterwards, it is possible to pass from A G toF t

Ž .A G by adding rows and columns corre-F Ž tq1.
Ž .sponding to FrIs entering the network at time tq1

and updating the entries of the new matrix according
to latest agreements.

In the context of the present paper, we shall also
use a more concise representation of the digraph
structure at time t, by considering the block matrix
Ž .B G obtained by collapsing rows and columnsF tŽu .

Ž .of matrix A G that correspond to FrIs belongingF t

to a common cohort of entrants defined by the time
w . Ž .period us t, tqu Generation . Entries b ofi j

Ž .B G indicate the total number of agreementsF tŽu .
Ž . Žbetween Generations i DeÕelopers and j Origina-

. Ž .tors at time t see Table 3 .
The analysis of the structural properties of the

digraph has led to the following results.

4.2.1. The digraph is asymmetric
Ž . Ž . Ž .For almost all relationships e d,o , ´ d -´ o

i.e., the Originator usually entered the network after
the DeÕeloper did. Early entrants have been acting
mostly as DeÕelopers. Moreover, earlier generations
of DeÕelopers have been establishing a large num-
ber of agreements with a large number of later
entrants, which have been acting as Originators.

Data presented in Table 3 show that a large
fraction of R&D agreements are associated with
projects started by younger firms andror research
institutions, and then developed by older firms. In
other words, the graph is characterized by a strong
prevalence of inter-generation agreements over
intra-generation agreements.

This result is confirmed by two tests carried out
Ž .on block matrix B G , according to differentF tŽu .

values of u .
The first test is the Conditional Symmetry Model

Ž .McCullagh, 1978; Everitt, 1977 , applied to the

Table 3
Intergeneration and intrageneration R&D agreements

O

INC NBF NBF NBF NBF INST1 2 3 4

D INC 203 387 722 434 218 32
NBF 12 23 55 25 14 171

NBF 18 22 77 40 42 3092

NBF 13 10 41 38 35 2463

NBF 8 6 27 22 32 944

INST 1 4 7 3 5 8

INCsFirms founded before 1973; NBF sFirms founded be-1

tween 1973 and 1981; NBF sFirms founded between 1982 and2

1986; NBF sFirms founded between 1987 and 1991; NBF s3 4

Firms founded after 1992; INSTsResearch Institutions.
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ordered data matrices. According to the model, the
null hypothesis is:

H :P b sP b for i- j;Ž . Ž .0 i j ji

Ž .That is to say, P b , the probability of observ-i j

ing a given number of agreements between a genera-
tion i of DeÕelopers and j of Originators is equal

Ž .to P b , i.e. there is no structural bias leadingji

youngerrolder FrI act more frequently as Origina-
tors or as Developers.

According to the model, the ratio between the
frequency of values above and below the main diag-
onal is set constant and equal to d :

dsF rF , i- j.i j ji

Ž .According to Agresti 1984 , the estimators for
the constant d and the frequencies F , F are giveni j ji

by:

bÝ i j
iFj

d̂s
bÝ ji

jFi

b qbŽ .i j ji
E s , if iG ji j

d̂q1Ž .

d̂ b qbŽ .i j ji
E s , if iF ji j

d̂q1Ž .
After running the model over our data for

Ž . 2B G , we found that ds1.8163, the X testF tŽ12.
Ž .being highly significant p value -0.01 . This

result confirms the insight gained by inspection of
Table 3. In particular, one observes many more
agreements between earlier generations of DeÕelop-
ers and all the subsequent generations of Origina-
tors.

In addition to the Conditional Symmetry Model, a
Ž .series of Permutation Tests Tsuji, 1997 have been

Ž .carried out on matrix B G According to theF tŽu . .

Permutation Test, the mean degree of asymmetry is
measured by the expression:

Nb yb NÝÝ i j již /
i j

Ds for iF j
n

Ž .where n is the number of blocks generations of the
Ž .matrix. The original matrix B G undergoes aF tŽu .

large number of random permutations and, each
Ž .time, the mean degree of asymmetry, D p , is com-

Ž .puted again. The fraction of permutations with D p
)D is always minor than 0.01. That is to say, the
probability that the observed degree of asymmetry is
purely random is very low.

In sum, the network of agreements is shown to be
highly asymmetric. Moreover, the results of the Per-
mutation Test reveal that the degree of asymmetry
measured by the value of d in the Conditional
Symmetry Model is actually the outcome of the time
order of the matrix and not of other possible ways of
ordering the matrix itself.

In a nutshell, the digraph can be said to be time
reÕerse, as on average, time order and time orienta-
tion are inversely related.

4.2.2. The digraph is intransitiÕe
A graph is transitive if it contains a relation

Ž . Ž . Ž .e u,w for every couple of edges e u,Õ and e Õ,w .
That is to say, the more each node can link indiffer-
ently with any other node in the network, the more a
graph is transitive. Transitivity is essential in order to
distinguish among alternative structural hypotheses,
and various indices have been proposed for measur-

Ž .ing it Frank and Harary, 1982 . In fact, intransitive-
ness implies some form of hierarchisation of the
structure of the agreements over multiple levels
Ž .Hummon and Fararo, 1995 .

In order to check for the existence of an high
degree of intransitiveness, we first calculated the

Ž .number of paths of length two 8666 present in our
network. Paths of length one correspond to simple

Ž 2 .edges u™w. Paths of length two R correspond
to sequences of two agreements u™w™Õ. Then,
we calculated the percentage of transitive triads upon
the total number of paths of length two within the

Ž .digraph see Harary et al., 1975 . In our data this
percentage comes up to be very low, since it equals
to 0.00018. This result is highly significant even

Žafter taking into account the low graph density ds
. 50.00136 , unambiguously confirming that the di-

graph is significantly asymmetric.

5 � Ž Ž . Ž . Ž ..4 � Ž Ž . ŽThe ratio F e u, w , e u, Õ , e Õ, w r F e u, Õ , e Õ,
.. Ž Ž ..4w F e u, w computed over every triad of vertices u,Õ,w,

equals to about 0.13.
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Fig. 3. Alternative structures of the network.

4.2.3. The digraph has a hierarchical structure
We are now able to show that the observed degree

of intransitiveness has to be interpreted as a result of
the temporal structure of the network. To do that, we

Ž .analyze the distributions of paths of length one R
Ž 2 .and two R according to the time of entry into the

network. Specifically, we calculate the difference
between the share of paths of length one and paths of

Ž 2 Ž . Ž ..length two DsR % yR % , respectively, for
DeÕelopers that entered the network before and after
1981, and for Originators that entered the network
before and after 1992.6 Paths of length two identify a
sequential structure where intermediate nodes exist,
which have an agreement as DeÕelopers with one
agent and an agreement as Originators with another
’’terminal’’ agent. Computation of the values of D

allows us to identify the relevance of these interme-
diate nodes. To fix ideas, compare the structures
shown in Fig. 3.

Ž .The first structure a is maximally hierarchical,
with firms that entered the network before 1981
attracting all the agreements originated by younger

Ž .generations. In the second structure b , the upsurge
of an intermediate layer is accounted for. As it is
evident, the intermediate layer, is composed by firms
that act as DeÕelopers in their linkages with younger
generations and, at the same time, play as Origina-
tors with respect to the previous generation. Finally,

6 We have done the same exercise using different dates. The
years 1981 and 1992, however, seem to have a very important role
in the the patterns of hierachization of the network.

Ž .the third elementary structure c represents a reduc-
tion of the overall degree of hierarchization of the
net, driven by the emergence of intra-generation
agreements.

Data presented in Table 4 show that the overall
network appears to be very similar to the second
benchmark structure until 1992. On the contrary,
after 1992 it appears to be the result of the coexis-

Ž . Ž .tence of structures of type b and c .
In synthesis, not only the graph is intransitive, but

it also has a distinct hierarchical structure, which is
associated with the presence of different generations
of firms, which play different roles within the net-
work. Firms that entered the network before 1981
play a fundamental role in structuring it by linking as
DeÕelopers to subsequent entrants. Later entrants
perform a different role: they link both with older
and younger generations, respectively as Originators
and DeÕelopers.

Finally, however, it has to be noted that firms that
have entered the net after 1992 have established a
higher number of intragenerational agreements than
firms of previous generations. As a consequence, a
lower value of D is observed for agreements be-
tween orginators entered after 1992 and DeÕelopers
entered after 1981.

4.3. The structural inertia hypothesis

We now move to unravel the nature of the genera-
tive processes underlying the evolution of the net
over time. In order to test our null hypothesis of a
conservative process going on, let’s suppose that the

Ž .degree Deg i,t , that is the total number of agree-
ments of FrI at time t, depends upon how long iti

has been present within the network, and on the
number of potential partners that are active during

Ž .the same period of time. In this case, Deg i,t may

Table 4
Ž .The value of D according to date of entry into the network t´

O

D t F1992 T )1992´ ´

D t F1981 4.21 5.79´

t )1981 y8.28 y1.73´
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be expressed as a function of a value t) , that is a
measure of time weighted by taking into account
flows of entry. In practice, we clean the observed

Ž .values of Deg i,t from the effects associated with
differences in periods of presence within the network
and number of potential partners at any given time.

Ž .Since the digraph is time reverse, dDeg i,t , the
number of agreements as a Developer of FrI ati

Ž .time t, is distinguished from oDeg i,t , the number
of agreements as an Originator of FrI at time t.i

Then, for each FrI belonging to the same genera-
tion, two different t) values, namely t) and t)d o

have been calculated. More precisely:
t

)t s n ´ s t ;Ž .Ýd o
ts´

´

)t s n ´ s t .Ž .Ýo d
ts1

Ž . Ž .where: n ´ s t , n ´ s t , are the number of firmso d

entering the network as Originators and DeÕelopers
at time t and t is the last period of observation. In

)Ž .Fig. 4, dDeg ´ , t . That is, degrees of DeÕelopersd

that entered the network in the same month ´ are

plotted as crosses, while the degrees of Originators
)Ž .oDeg ´ , t are plotted as triangles.o

) )Ž . Ž .The analysis of dDeg ´ , t and oDeg ´ , td o

reveals two major deviations from a structural inertia
hypothesis:

) )Ž . Ž .1. Since Deg ´ , t )Deg ´, t for ´-1981˜
F´, a persistent first mover advantage effect is˜

Ž .present ts1981 ;
)Ž . Ž .2. Since dDeg ´ , t )oDeg ´, t for ´)1992,d o

an inÕersion of the DeÕeloperrOriginator pro-
Ž .file is detected after 1992 t s1992 .2

In other words, after controlling for differences in
time horizons and in the number of FrIs active
whitin the network at any given point in time, earlier
entrants tend to establish a larger number of agree-
ments than later ones. Notably, the first mover ad-
vantage effect is stronger than it would have been
under the conservative process hypothesis. Besides,
firms which entered the net after 1992 have estab-
lished more agreements as DeÕelopers than expected
according to the hypothesis of a conservative growth
process being in place.

Fig. 4. Originators and DeÕelopers profiles.
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On the whole, the results discussed so far on the
structural properties of the graph in terms of patterns
of growth, and degrees of hierarchization, asymme-
try and intransitiveness in t, can be summarized by
means of Fig. 5.

Thin arrows give a stylized representation of the
structural inertia hypothesis. Bold arrows are meant
to capture the violations to that hypothesis. Let
summarize them. First, we observe a first mover

Ž .advantage effect vertical bold arrow . Second, a
change is detected in the DeveloperrOriginator pro-

Ž .file after 1992 horizontal bold arrows .
In Fig. 5, the orientation of the arrows reflects the

time reversal phenomenon, i.e. the prevalence of
inter-generation agreements over intra-generation
agreements. I indicates firms that entered the net-
work before 1981 and that benefit from a significant
first mover advantage. C indicates firms that behave
following the structural inertia hypothesis. T indi-
cates firms that induce deviations from that pattern
after 1992.

4.4. Departures from the structural inertia hypothe-
sis

In this section, we analyze the nature and determi-
nants of the relational roles played by firmsrinstitu-
tions that are Cospecialized and firmsrinstitutions

Žthat are transversal within the graph C and T in Fig.
.5 . First, we examine if FrIs of type T constitute an

homogeneous group in terms of their relational pro-
file. Secondly we advance and test the hypothesis
that the major deviations in the structure of the
network are related to the appearance of a new type
of firms. Third, we show that these new firms em-
body what we called transversal technologies, which
generate entirely different relational patterns than
before. In synthesis, the observed structural changes
in the graph are shown to be related to the emer-
gence of a new class of research technologies.

Fig. 5. Main structural properties of the network.

As we already know, after 1992 a new dynamic
process starts to interact with the conservative pro-
cess discussed earlier to generate the structure of the
network.

To test this conjecture, we now try to identify the
relational role that different generations of firms and
different firms within the same generation play in the

Ž .network at different points in time every year . In
other words, we ask whether the graph can be mean-
ingfully decomposed in specific subgraphs contain-
ing firms and institutions which play unambiguous
relational roles. To do that, we analyze the nature
and origins of deviations from a matching condition
at different points in time. More precisely, we try to
couple unambiguously individual Originators to in-
dividual DeÕelopers. If each specific Developer were
coupled to a specific Originator we would obtain a
perfect matching. However, we may find some De-
Õelopers that are not linked only to a specific set of
Originators, but attract a large number of different
DeÕelopers and lead to a hierarchization of the net-

Žwork. We call them Transversal DeÕelopers Trans-
.DeÕ . Similarly, we might observe Originators that

make agreements with different agents. This would
be the case of what we may call Transversal Origi-

Ž .nators TransOr .
In order to identify firms that play different rela-

tional roles within the network, a Canonical Dul-
mage–Mendelsohn decomposition has been per-

Ž .formed see Appendix B . The digraph has been
transformed into a bipartite graph and each node has
been classified only either as a DeÕeloper or as an
Originator.7 Fig. 6 synthesizes the logic and results

7 Ž .In a bipartite graph, the vertex set V G is partitioned into
two sets V and V in such a way that no two vertices in the same1 2

subset are adjacent. In particular, to represent the pharmaceutical
R&D network as a bipartite graph, the vertex set V has been
partitioned into two subsets D and O. As a vertex is forbidden to
be included at the same time in partitions D and O, vertices Õd

Ž .and Õ FrIs that act respectively as DeÕelopers and Originatorso

have to be treated independently. As for FrIs which operate at the
same time as DeÕelopers and as Originators, we consider for
each of them two different vertices in set D and O, respectively.
As a result, we are allowed to consider the bipartite graph

ŽŽ . .bG O, D , E , which represents the agreements drawn upDt

during a given period Dt among DeÕelopers on the one side and
Originators on the other.
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Fig. 6. Transversal and co-specialized nodes within the graph.

of the Dulmage–Mendelsohn decomposition. Boxes
H , H represent the two non-trivial subgraphs for1 2

which a matching can be found. In each box, we
observe two subsets of DeÕelopers and Originators.
Box H contains the relational core of the network1
Žapproximately, the persistent relational component
of the network: i.e. firms which have a large number
of agreements andror have entered the network

.early on , while box H includes the relational2

fringe of the network. The matching in box H1

captures the main structuring process of the network

that we termed as the conservative process. How-
ever, we also identify a subset of DeÕelopers in box
H that link with a subset of Originators in box H .1 2

They correspond to what we defined above as
Ž .Transversal DeÕelopers TransDeÕ and Transversal

Ž .Originators TransOr .
The two sets of firmsrinstitutions denoted as

TransDeÕ and TransOr can be thought of as the
structural attractors of the network, i.e. they attract

Žmost of the agreements in each period of time tech-
nically, they are present in all the intersections among

.minimum coverage vertex sets: see Appendix B .
TransDeÕ and TransOr firms play a transversal

role within the network, i.e. they cannot be assigned
an unambiguous relational role. Transversal DeÕel-

Ž .opers TransDeÕ establish several relationships with
a wide variety of firms. On the other side, within the
Originators group, a clear distinction can be drawn
between a set of firms that are co-specialized in their

Ž .relational behavior CospOr , i.e. they are matched,
and a set of firms that play a transversal role within

Ž .the network TransOr .
These results confirm that different kinds of rela-

tionships are present into the graph and hence that a

Table 5
First 20 FirmsrInstitutions by number of agreements according to: number and ranking of R&D projects, worldwide sales ranking, 1997

Network ranking No. of ties Firms and institutions R&D projects Sales rank

1 145 Novartis 224 3Ž2.
2 141 Hoffmann-LaRoche 112 6Ž12.
3 88 Smith Kline 152 9Ž7.
4 81 Merck and Co 207 2Ž4.
5 77 Bristol-Myers Squibb 209 4Ž3.
6 74 American Home Products 124 8Ž10.
7 69 Lilly 138 12Ž8.
8 62 Abbott 93 18Ž13.
9 60 Pfizer 77 7Ž19.

10 52 Schering- Plough 113 15Ž11.
11 51 Pharmacia and UpJohn 174 11Ž6.
12 46 Glaxo Wellcome 204 1Ž5.
13 45 Centocor 22 –Ž101.
14 43 Genentech 45 –Ž33.
15 41 Incyte 10 –Ž257.
16 40 Bayer 44 16Ž35.
17 39 Parke- Davis 88 –Ž16.
18 37 Genetics Institute 19 –Ž123.
19 36 NIH 131 –Ž9.
20 34 Chiron 64 –Ž24.



( )L. Orsenigo et al.rResearch Policy 30 2001 485–508 499

conservative process cannot represent its whole
structural evolution.

It is now possible to demonstrate that the rela-
tional roles that have been identified correspond to
firms embodying different types of technologies and
that the changes over time in such roles correspond
to the emergence of a new set of technologies, i.e.
transversal technologies.

On the Developer side, the core of the network is
persistently composed by a relatively small group of
firms. Table 5 classifies firms according to date of
foundation and presents information on the cumula-
tive number of R&D ties, on number of ongoing
R&D projects, and on ranking in terms of world-
wide pharmaceutical sales in December 1997. For
the group of actors that compose the core of the
network a strong positive correlation between the
number of R&D agreements, R&D projects and
market sales is clearly observable.

As shown in Table 6, the set of firms playing a
TransDev role is composed by the very same highly
stable group of large R&D intensive pharmaceutical
firms that entered the network early on and that have
been playing a role of structural attractors during the
whole history of bio-pharmaceutical industry. More-
over, those firms that started to act as TransDev
since the beginning of the 1990s were already part of
the core of the network in the previous years.

Table 6
First 15 firms active as TransDev, 1981–1997

TransDev Firms Number of years
aHoffmann-La Roche 7

aGlaxo Wellcome 6
aSmith Kline 6

aAbbott 5
aBayer 4

aBristol-Myers Squibb 4
aMerck and Co. 4

aPfizer 4
aSchering-Plough 4

aCiba-GeigyrNovartis 4
aDuPont 3

Hoechst Marion Roussel 3
aLilly 3

aSandozrNovartis 3
aWyeth-Ayerst 3

a Firms that were Cosp DeÕ already before 1992

Fig. 7. Number of firms by relational category.

Fig. 7 plots the moving average of the number of
firms classified according to relational categories in
terms of co-specializationrtransversality. It shows
that a set of firms playing a transversal role within
the network has taken off after 1992. At the same
time, throughout the whole time period under obser-
vation, the number of firms that have been acting
within the network as CospOr steadily increase.
Correspondingly, from 1992 to 1997 the network has
been characterized by the coexistence of both CospOr
and TransOr firms.

On the Originator side, we already showed a
correspondence existing between the emergence of
transversal technologies and patterns of entry of new
generations of Originators. We are now able to
prove that technological transversality is a major
determinant of relational transversality within the
industry network.

More precisely, firms that have been identified as
Transversal Originators into the graph by means of
our analytical procedures embody Transversal Tech-
nologies.
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Further information on the technological bases of
relational transversality has been gained through a
detailed analysis of the technological background of
Transversal Originators based on personal inter-
views, information provided by 10K and 10Q SEC
files reports, specialized press, and our proprietary
data set at the University of Siena on R&D projects
within the industry.

Transversal Originators are actually active in
fields characterized by the presence of transversal
research technologies, such as new drug delivery
systems, combinatorial chemistry, genomics, ge-
nomic libraries, proteomics, highthroughput screen-
ing, and bioinformatics. In particular, Appendix C
focuses on all most important firms that have been
classified by the Algorithm as Transversal Origina-
tors. As it is possible to notice, these firms are active
in fields characterized by the existence of general
purpose platform technologies such as genomics,
genomic libraries, proteomics and combinatorial
chemistry, reporting R&D projects and agreements
in the selected technological areas. Almost all the
firms which were included in our R&D agreements
data base and that are active on the basis of these
platforms have been categorized as Transversal
Originators by the Dulmage–Mendelsohn proce-
dure.

The insight we have been gaining on the techno-
logical determinants of the changes in the structure
of the network sheds additional light on the nature
and determinants of the alrteady mentioned persis-
tence by a core of established firms on the Developer
side. On this, we have been reconstructing the dy-
namics of the TransDev component after 1992. As
our analysis was able to detect, the core of the
network initially expands, driven by flows of entry
of new co-specialized firms and structured by the
hierarchization of the network associated with the
dominance of the molecular biology regime of
cospecialized hypotheses and molecules. Until about
1992 the relational core of the net was populated
mostly by early entrants. After 1992, the underlying
technological discontinuities induced by the emer-
gence of the new transversal technologies induce a
significant turnover in the core of the network on the
Developer side.

In other words, new transversal entrants have
started to act as Originators not only in their rela-

tionships with early entrants, but also with young
entrants lacking capabilities and knowledge bases in
the fields of chemical diversity generation and
screening. However, in the following years, estab-
lished firms active as DeÕelopers have regained very
quickly their structural role in the evolution of the
industry network. In a nutshell, the entry of new
Transversal Originators and the correspondent shift
at the level of relational behaviors did not deeply
modify the overall core–periphery profile of the
industry network.

5. Concluding discussion

In this paper we have analyzed the structural
evolution of the network of collaborative agreements
in pharmaceutical R&D in the last 20 years. Our
results reveal that some fundamental properties of
the processes of growth of relevant knowledge bases
are preserved in the structural evolution of the net.

Specifically, both the growth of knowledge and
the structural evolution of the network have been
characterized by fast expansion, proliferation of re-
search trajectories and techniques, and hierarchiza-
tion. The cumulative nature of such processes has
been imposing different degrees of structural stabil-
ity at different levels of the hierarchy. Finally, major
changes in the network structure have occurred in
correspondence with the emergence of a new set of
transversal technologies.

We think that our results, while specific to the
pharmaceutical industry, might bear interesting im-
plications for a variety of both empirical and concep-
tual issues.

First, our findings may contribute to the broad
debate on the nature and motivations of the network
of alliances. Secondly, they can contribute to the
analysis of the relationships between science and
technology, public research and industrial R&D and
the like. More generally, they may have some impli-
cations for theories which aim at explaining the
forms of organization of innovative activities, pat-
terns of division of labour and industrial dynamics,
particularly those which emphasize the relevance of
the notions of competencies, and dynamics capabili-
ties of firms.
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In synthesis, the main conclusion of this paper
might be that the specific nature of technology and

Žrelated learning processes matters in shaping or, at
.least, in defining some boundaries to the possible

organization forms of R&D, patterns of division of
labour and industrial dynamics.

In our view, the formation and subsequent evolu-
tion of the network of R&D alliances can be inter-
preted primarily as an adaptive response to the emer-
gence of a radically new knowledge base within the
industry, that is molecular biology. Scientific
progress, however, did not only simplify the search
space by providing more general theories. It also led
to an expansion of the relevant search space, signifi-
cantly deforming it. Firms — both large established
companies and NBFs — could master at best only
fragments of the relevant knowledge. The high rate
of growth of knowledge, its evolution into increas-
ingly specific and uncertain directions and — espe-
cially after 1992 — the appearance of transversal
technologies, have led to the generation of a wide
variety of approaches and lines of research.

These properties of relevant knowledge bases and
related learning processes have induced particular
patterns of division of labour between different types
of firms. In general, our results indicate that two
different logics of exploration and technological ad-
vance have been coexisting and complementing each
other in the process of network evolution. The first
avenue has been following a trajectory of increasing
specification of biological hypotheses. The second
has been progressing towards the development of
transversal techniques to generate and screen com-
pounds and molecules. The first trajectory has been
generating patterns of division of labour in which
older generations of firms have been working at
higher levels of generality linking with successive
generations of new entrants, who typically embodied
increasingly specific hypotheses and techniques. The
second trajectory has tended to alter this inter-gener-
ation structure. In synthesis, several mechanisms have
influenced the patterns of division of labour dynami-
cally interacting to produce quite complex structures.

In both cases, established R&D-intensive phar-
maceutical firms have been able to absorb the new
knowledge by interacting with new entrants. In fact,
the expansion of the network has been driven mainly
by the entry of new agents embodying new tech-

niques. The network has taken a distinct hierarchical
structure, with different firms operating at different
levels of generality, which was perturbed but not
broken by transversal techniques.

The above evidences support, in our view, two
hypotheses already advanced in the literature,

Ž .namely: a the cumulativeness of learning and com-
Žpetence building processes see Henderson et al.,

. Ž .1999 ; b the significant capabilities by established
multi-technology R&D intensive corporations to ab-
sorb new knowledge and techniques generated out-
side firms boundaries, despite major technological
discontinuities and breakthroughs initially resulting
in the growth of specialized technology producers
ŽCohen and Levinthal, 1989; Henderson, 1994;

.Granstrand et al., 1997 .
The evidence presented in this paper suggests also

that firms have found serious difficulties in modify-
ing their structural position within the network. Put it
in another way, specialist firms have tended to re-
main specialists, while early entrants have enjoyed
significant first mover advantages, precisely because
they have been able to embody knowledge at a high
level of generality. Thus, a major asymmetry seems
to have characterized the evolution of the network:
while in many cases AgeneralistB firms have been

Ž .able to gradually absorb increasingly specific
Žknowledge at least along particular trajectories of

.research , specialist firms found it much harder to
move into the opposite direction.

First mover advantages, the asymmetry between
AgeneralistsB and specialists and — more broadly —
the observed process of hierarchization of the net-
work, may well be related to other Amore tradi-
tionalB variables, such as firms size, degrees of
diversification, available resources, etc. In more gen-
eral terms, one can legitimately wonder if the ob-
served dynamics of the network is an Aunconditional
objectB, which might have been generated by pro-
cesses and influenced by different variables than
those emphasized in this paper.

Indeed, controlling for variables like firm size,
diversification, propensity to make agreements, etc.,
constitutes an important part of our current research
agenda. It is worth noting, however, that an explana-
tion based on conventional firms features is not in
contrast with our interpretation. Moreover, the re-
sults we get support the potential value of an ap-
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proach that emphasizes the relevance of the specific
properties of relevant knowledge bases, learning, and
technologies.

Finally, this paper might have further implications
from a more technical perspective. The graph-theo-
retic techniques we have used proved useful in map-
ping major technological discontinuities on changes
observed at the level of dominant organization forms.
They might have applications in other domains,
whenever the identification of structural breaks and
homological relationships between technological and
industrial spaces are important issues.
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Appendix A. Graphs and digraphs

In order to define the notion of a digraph, we
have to introduce a definition of what a network
Ž . Žnet is. A net is generally defined see Harary et al.,

.1975; Slepian, 1968; Diersel, 1997 by the following
axiom system:

1. A finite and non-empty set V of elements Õ

called AverticesB;
2. A finite set E of elements e called AedgesB;
3. A function f whose domain is E and whose

range is contained in V;
4. A function s whose domain is E and whose

range is contained in V;

Ž .A digraph oriented graph is a net which does not
Ž Ž . Ž . .include neither loops f e /s e ;egE nor par-

Ž Ž . Ž . Ž . Ž .allel edges f e s f e and s e ss e ´e sei j i j i j
.;e , e gE .i j

Within the context of this paper, the structural
proprieties of the network of R&D agreements are
investigated by interpreting sets V, E and functions
f , s in the following way:

Ž .1. V: The set of FirmsrInstitutions FrIs that
have at least one R & D project in their
pipelines. In our case each firm is associated
with a set of projects. In other words, Õ should
be thought as the set of projects of FrI, while
V should be thought as the collection of the
project sets corresponding to each FrI;

2. E: The pharmaceutical R&D projects included
in the data set;
Ž .3. o e : FrI that started an R&D project e. In

addition, Õ denotes the subset of Õ projectso

originated by each FrI;
Ž .4. d e : FrI that develop an R&D project e. In

this case, Õ denotes the subset of projects Õd

developed by each FrI.

As a consequence of the above definitions, every
edge e within the graph is an oriented edge defined

Ž .by a couple o,d . As far as our empirical analysis of
the network structure is concerned, we take into
account only the subset of the R&D projects for
which o/d. That is to say, only projects associated

Ž .to two or more FrIs are considered no self loops .
Moreover, we treat multiple and repeated relation-

Žships among the same actors as a single edge no
.parallel edges .

In order to study the dynamics of the digraph we
define both a time orientation and a time order of the
graph. As the development phase follows by defini-
tion the starting date of a project, maps o and d
substantiate a time orientation of the graph either.
What we need now is a time order defined on the
vertices according to the year of entering into the
network. Formally:

Ž Ž ..– t e o : month in which project e is started by
o;

Ž Ž ..– t e o,d : month in which FrI d start to
cooperate with firm o to develop project e. By

Ž Ž .. Ž Ž ..definition t e o,d Gt e o ;
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Ž . Ž Ž ..– ´ Õ :min t e o,d the month in which Õ0 Õo

signs its first agreement as an Originator;
Ž . Ž Ž ..– ´ Õ :min :t e o,d : the month in which Õd Õd

signs its first agreement as a DeÕeloper;
Ž . Ž Ž .. Ž .– ´ Õ smin t e o,d smin t ,t : date of

Õ Õ o d
Žentry within the network the month in which Õ

.signs its first agreement .

In other words, with reference to the structural
evolution of the network, a time ordering has been
established according to both the year of foundation
and the year of entry of any given FrI within the
network. It is important to notice that both orderings
are complete. On the contrary, the time-oriented
graph generated by the distinction between Origina-
tors and DeÕelopers correspond, to a partial order

Ž .set see Asratian et al., 1998, Chap. 10 and in
Ž .particular, to a time partially ordered set Gs T ,y .

According to ordered set theory, a non-empty subset
� 4Cs t ,t , . . . ,t :T such that t y t . . . y t is1 2 k 1 2 k

called a chain. If CsT , the time order is complete.
Moreover, two elements of T are said to be compa-
rable if they appear together in the same chain C.
Conversely, non-empty set of pairwise incomparable
elements is called an antichain. Finally, the partition
of G into disjoint time chains corresponds to a time
decomposition of the network.

Appendix B. Dulmage–Mendelsohn decomposi-
tion

In order to identify the structure of the bipartite
Ž .graph at different points in time bG , a condensa-D t

tion procedure has been applied to the bipartite
graph. This procedure generates a graph minor

w xbG M obtained by shrinking every strongly con-D t

nected subgraph, replacing it with a vertex, and then
substituting each set of parallel lines with single
lines.

In the case of a bipartite graph, the concept of a
strongly connected component is equivalent to that
of a strong Hall component. Vertices in a Hall
component are perfectly matchable, that is, there is a

Žmatching a set of edges in which no two edges have

.a common end vertex which covers every vertex
Ž .within it for further details, see Diersel, 1997 .

The lines belonging to a matching are said to be
admissible, while the remaining ones are called inad-
missible. 8Fig. 6 represents graphically the outcome
of the analytical procedure described so far.

The application of a Canonical Dulmage–
ŽMendelsohn decomposition algorithm see Dulmage

and Mendelsohn, 1958, 1959; Lovasz and Plummer,
.1986, Ch. 4, p. 137 to the bipartite graph bGD t

produces the following results:

Ž .1. Two subgraphs non-trivial H , H , which are1 2

the connected components of the induced sub-
w xgraph bG M ;D t

2. H , H are two elementary bipartite graphs;1 2

3. Since the number of connected components of
w xbG M is greater than one, by permutingD t

rows and columns the corresponding bi-ad-
Ž .jacency matrix A bG can be put into theD t

form:

A )1

0 A2

where matrices A , A are the bi-adjacency1 2

matrices corresponding to the subgraphs H ,1

H while ) represents the transversal ties be-2

tween the two sub-matrices.

In the Canonical Dulmage–Mendelsohn decom-
position we have applied, a major role is assigned to
the interplay between maximum matching and mini-
mum vertex cover. As transversal vertices are in-
cluded in every minimum vertex covering of the
graph, a greater proportion of such kind of vertices
over the total number of Originators implies a higher
number of time chains in which the graph can be
decomposed.

8 An edge e is inadmissible if and only if there exists a
non null minimum vertex covering — i.e., a covering consisting–

Žof as few elements as possible — C :V of vertices in V ando o d
. Ž Ž w x.. Žvice versa such that e belongs to that cover egE G C see

.Lovasz and Plummer, 1986; Asratian et al., 1998 .
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( ) ( ) ( )Appendix C. Transversal Originator firms ‘ out of firms active in combinatorial chemistry cc , genomics g , genomic libraries
( ) ( ) ( )gl , proteomics p , and target based screening tbs

Originators Found Developers R&D projects R&Db
Year Tech.

Ž .3 D Pharma ‘ 1993 BioCryst; Merck KGaA DirectedDiversity ThermoFluor cc,tbs;
Ž .Affymetrix ‘ 1991 Amersham Pharmacia Biotech; GeneChip, genomics library, g; gl

Beckman Coulter; Eos; gene expression, gene discovery,
Gemini Research; Gene Logic; bacterial GeneChip probe arrays,
Genetics Institute; Howard Hughes inflammation, breast cancer,
Medical Institute; Lilly; gene discovery,
Merck and Co.; Novartis; Pfizer; G-protein coupled receptor
Roche, Gene Logic, Human pathways, prostate cancer
Genome Sciences

Alanex 1991 Aurora Pharmacophore cc
Directed Parallel
Syn., ALANET

AlphaGene 1993 Genetics Institute FLEX, genetics libraries g; gl
Ž .Ariad ‘ 1991 Genovo; Hoechst Marion Roussel; gene expression regulation g

Harvard University; Stanford technology
University

Ž .ArQule ‘ 1993 Abbott; ACADIA; Aurora; ICAgen; Directed array, cc
Monsanto; Ontogeny; R W Johnson Mapping array
Research Institute; Roche
Bioscience; Sankyo; Scriptgen;
Signal; Solvay; Wyeth Ayerst

Ž .Aurora ‘ 1995 Axys; Becton Dickinson; Genomics technology, g; tbs
Warner Lambert, Allelix; Aurora screening
Bristol-Myers Squibb; technology, fluorescent
Cytovia; Lilly;
Merck and Co; Roche
Bioscience; SIDDCO

Ž .Axys ‘ 1997 Parke Davis; Pharmacia New targets database, cc, g; gl
and Upjohn; Protein combinatorial chemistry,
Design, Luminex; ZymoGenetics RAMMP, Liquid arrays,

paracrinerendocrine
signalling molecules
gene database

Cadus 1992 Genome Therapeutics; APEX; LIVING CHIP tbs; g
SmithKline Beecham
Massachusetts Institute
of Technology

Ž .Camb. Antib. ‘ 1990 ICOS; Progenitor; Wyeth Ayerst ProxiMol, ProAb g; gl
Cognetix 1993 Merck and Co; SIBIA Combinatorial chemistry, cc;

conopeptide libraries
Ž .CombiChem ‘ 1994 ICOS; Ono; Roche Bioscience DISCOVERY ENGINE cc

Ž .CuraGen ‘ 1993 Biogen; Genentech; ArQule Quantitative Expression g, gl; p; tbs
Analysis; PathCalling
database; Multiplex
Interaction Assay
GeneCalling database;
SeqCalling; CombiGen

Discovery 1993 Combinatorial chemistry, cc., tbs;
Technologies cyclin dependent kinases,

receptor tyrosine kinases,
Ž .Dyax ‘ 1995 Affymax; Bristol-Myers phage display technology cc

Squibb; Burnham
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Originators Found Developers R&D projects R&Db
Year Tech.

Institute; Cambridge
Antibody Technology;
Chiron; Chugai; Corvas;
Cytogen; DuPont;
Genzyme; Merck and Co;
MorphoSys; Pharmacia
and Upjohn; Scios

Ž .EnzyMed ‘ 1994 Merck and Co BIOACTIV cc.
Ž .Gene Logic ‘ 1995 Japan Tobacco; Organon rEST database, Flow-Thru g;gl;tbs

Chip, GENE EXPRESS,
Multiplex Selection of
Transcription Factors,
READS, VIRIA

Genetics 1980 Bayer; Chiron; Chugai; DiscoverEase g
Ž .Institute ‘ Genentech; Immunex;

Kirin Brewery; Ontogeny;
Rhone-Poulenc
Rorer; Sankyo; Scios

Genome Pharmaceuticals 1992 Genomics technology, g; p
Pharmaceuticals gene expression profiling,

protein interaction mapping
Genome 1991 Bayer; Bristol-Myers PathoGenome gl; g

Ž .Therapeutics ‘ Squibb; Hoechst Marion
Roussel; Schering Plough

Genometrix 1993 GeneMedicine DNA microarray g
technology

Ž .Genzyme ‘ 1981 Bayer, PaineWebber R&D Combinatorial chemistry, cc., tbs
Merck and Co Partners COMPILE, screening

technology, p53rMDM2
interaction inhibitors,
Solid Phase Epitope
Recovery SPHERE

Human 1992 Genetic Therapy; Isis; Human cDNA database, g; gl
Genome Transgene; SmithKline genomics technology,

Ž .Sciences ‘ Beecham; Merck KgaA; microbial genome database
Synthelabo; Takeda

Ž .Hyseq ‘ 1992 Kirin Brewery; Perkin Elmer, HyChip, SEQUENCING g; gl
University of California BY HYBRIDIZATION, gene discovery,
at San Francisco cardiovascular disease

Ž .IGEN ‘ 1982 Abbott; Agouron; Amgen; ORIGEN tbs
Bristol-Myers Squibb;
Peptide Therapeutics; Pfizer;
Schering Plough; ZymoGenetics

Ž .Incyte ‘ 1991 Lilly; Monsanto; Roche, AureusGEM, CandidaGEM, g, gl tbs
Abbott; Pfizer; LifeSeq Atlas, LifeSeq
Schering; Schering Plough, FL, mGSD-library, GSD-screen,
Abbott; Ariad; PathoSeq.
AstraZeneca; BASF;
Bristol-Myers Squibb;
Genentech; Glaxo Wellcome;
Hoechst Marion
Roussel; Johnson and Johnson;
Novartis; Novo
Nordisk; Organon;
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Originators Found Developers R&D projects R&Db
Year Tech.

Pharmacia and Upjohn;
Rhone-Poulenc Rorer;
Roche; SmithKline
Beecham, Scriptgen

Irori 1995 Bristol-M. Squibb; Combinatorial chemistry cc.
Rhone-Poulenc Rorer

Lexicon 1995 DuPont Merck; Genome DOWNSTREAM GENE g
Genetics Research Institute; TRAPPING, LexGene,

ZymoGenetics OmniBank
Ž .Lynx ‘ 1992 BASF; DuPont; Hoechst Massively parallel g

Marion Roussel signature sequencing
Molecumetics 1992 Bristol-Myers Squibb MolecuSet, SMART cc.

Library Technology
MorphoSys 1992 Chiron; DuPont HuCAL, self-assembling cc; g; tbs

multimeric and multivalent
structures, trinucleotide-
directed mutagenesis,
selectively infective phage

Myriad 1991 Bayer; Schering Genomics tech., island g, gl
hopping gene seq., ProNet

Ž .NeXstar ‘ 1995 Fujisawa; Glaxo systematic evolution of cc
Wellcome ligands by exp. enrichment

Novalon 1996 Boeh. Ing.; Genzyme; BIOMOLECULAR Tbs
Millennium; SARCO RECOGNITION SYSTEM

Ž .Oxford Asymmetry ‘ 1992 Ares Serono; Bayer; combinatorial chemistry cc.
Ž .Asymmetry ‘ BioChem Pharma; OmniBank

Pfizer; Vertex
Ž .Panlabs ‘ 1970 Arena; Berlex; Bristol-M. OPTIVERSE Cc

Squibb; Genelabs;
Geron; Karo Bio; Synthelabo;
UCB, Tripos

Ž .Peptide Th. ‘ 1986 Lilly; Novartis, Medeva RAPiD, MolVaD cc.; tbs
Ž .Pharmacopeia ‘ 1993 AstraZeneca; Bayer; ECLiPS cc

Daiichi; Novartis;
Organon; Schering

Ž .Progenitor ‘ 1992 Cambridge Antibody ATLAS, genomics technology, g
Technology embryonic stem cell,

growth factor receptor gene,
yolk sac stem cell

Ž .Ribozyme ‘ 1992 Chiron; Glaxo Wellcome; Target Validation and Discovery, g; tbs
Parke Davis; Roche RNA editing
Bioscience; Schering

Sangamo 1995 AstraZeneca; Bayer; Universal GeneTools g
Ž .BioSciences ‘ DuPont; Japan Tob.;

Millennium; Pfizer;
S.K.B.; Targeted Gen.

Scotia 1994 SuperGen Combinatorial Lipids cc
Ž .Scriptgen ‘ 1993 Boehringer Ingelheim; ATLAS, SCAN tbs

Lilly; Roche
Ž .Sphinx ‘ 1987 Chugai; Kyowa Hakko; combinatorial chemistry cc

Taisho
Ž .Synteni ‘ 1994 Geron; Monsanto; GEM g

Schering Plough



( )L. Orsenigo et al.rResearch Policy 30 2001 485–508 507

Originators Found Developers R&D projects R&Db
Year Tech.

Ž .Telik ‘ 1986 Sankyo; Scios; Sosei TRAP tbs
Ž .Trega ‘ 1990 Bristol-M. Squibb, Biogen; combinatorial biology, cc

Isis; Parke Davis, ChemFolio, Tea-Bag
Northwest Neurologic;
Procter and Gamble

Ž .Tripos ‘ 1979 Bristol-M. Squibb, Arena Ph.; ChemSpace, LeadQuest cc
MDS Panlabs, Karo Bio,
Menarini; Hoechst M. R.

Ž .Xenometrix ‘ 1991 Affymetrix; Aurora; Genomic library, gene g; gl
Cerep; Gene Logic; response profiles, human
GeneTrace Systems; cell line-based
Genzyme; Incyte;
PHASE-1 Molecular
Technology; SmithKline
Beecham

Ž .Xenova ‘ 1986 Bristol-M. Squibb; NatChem, QTC, ASSET tbs, cc
Parke Davis; AstraZeneca
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