Estimating the association between SF-36 responses and EQ-5D utility values by direct mapping.

Alastair Gray1, Philip Clarke 1,2, Oliver Rivero-Arias1.

1. Health Economics Research Centre, University of Oxford, UK
2. Diabetes Trial Unit, University of Oxford, UK

XXIV Jornadas de Economía de la Salud

El Escorial
Madrid - 26-28 May 2004

WORK IN PROGRESS. PLEASE DO NOT QUOTE WITHOUT PERMISSION

Introduction

The ability to make reliable translations or mappings from generic or disease-specific health status measures into health state utilities would be of particular interest to health economists, given the increasing importance of the quality adjusted life year as the standard metric of outcome in economic evaluation. As a result, a number of attempts have been made to estimate the utility values associated with responses to generic instruments such as the SF-36.

To date, five studies have been published that report algorithms designed to generate utility values from the SF-36 and the SF-12. Lundberg and colleagues sent a postal questionnaire to 8,000 adults asking them to complete the SF-12, a rating scale question, and a time-trade-off question, and then used age, gender and the individual items of the SF-12 as explanatory variables in a linear regression analysis of health-state utilities indicated by the time-trade-off question (Lundberg et al. 1999). Fryback adopted a different approach, in which the SF-36 and Quality of Well-being index (QWB) instruments were both administered by interview to 1,430 people in the Beaver Dam Health Outcomes Study, and domain scales of the SF-36, their squares, and all pairwise cross-products were then used as candidate variables in stepwise and best-subsets regressions to predict QWB scores (Fryback et al. 1997). Shmueli used face to face interviews with a sample of 2,030 adults who rated their own health using the SF-36 and
a visual analogue scale, and then used linear and nonlinear regression to estimate the association between domains of the SF-36 and the VAS score (Shmueli 1999).

Another approach was adopted by Brazier and colleagues (1998), who restructured the SF-36 into the SF-6D health state classification, drew a sample of 59 multidimensional health states from the 9,000 possible states defined by this classification, valued them using visual analogue scale ratings and standard gamble questions on a convenience sample of 165 people, estimated the association between health states and valuations using OLS regression, and finally converted the model results into an algorithm potentially capable of providing utility values from SF-36 responses (Brazier et al. 1998). More recently, Brazier and colleagues reported more robust results using a larger sample: in this study, the SF-36 was again reclassified into a six-dimensional health state classification called the SF-6D, a sample of 249 states was drawn from the 18,000 potential states defined by the reclassification, a representative population of 611 people was used to derive valuations of these health states using standard gamble, and the association between health states and valuations was then modelled, generating results that offered a means to obtain utility estimates from SF-36 data (Brazier, Roberts, & Deverill 2002).

The studies listed above differ widely in their methods and in their objectives. It is not surprising, therefore, that direct comparisons between them suggest they may also give different results when used on a common SF-36 dataset. For example, Hollingworth and colleagues applied algorithms from five of the above studies to a cohort of patients with low back pain, and found differences in the mean utility value generated by each algorithm, in the ability to discriminate between groups of patients with known differences in disease severity, and in the effect size they are capable of detecting (Hollingworth et al. 2002). Similar findings were obtained from a comparison of these algorithms in a sample of patients with asthma (Lee, Hollingworth, & Sullivan 2003).

Of particular interest is the likely association between the utility values generated by these algorithms, and the utility value that would have been obtained from the EQ-5D. The EQ-5D is a multi-attribute instrument for measuring preferences associated with an individual’s health state (EuroQol Group 1990). Using a descriptive system covering five dimensions (mobility, self-care, usual activity, pain/discomfort, anxiety and depression) each of which has three levels (no problem, some problem, extreme problems), a utility value or “tariff” can be assigned to each of the 243 possible health states indicated by a respondent, in the UK by using the results of a survey of the general British population that involved valuing key states using the time-trade method and then using regression methods to impute values for all states (Dolan et al. 1996). Knowing the likely degree of agreement between utility values obtained from algorithms applied to the SF-36 and/or SF-12 and utility values obtained from the EQ-5D is important, not because utility values obtained using the EQ-5D are in any sense a “gold standard”: indeed, Brazier explicitly notes that his instrument may be used as an alternative to the EQ-5D, and may give different results due to the larger number of health states it accommodates, the use of standard gamble rather than time-trade off, and other differences (Brazier, Roberts, & Deverill 2002) However, the EQ-5D is the most commonly used instrument for obtaining
utility values and is increasingly recommended as a standard instrument by reimbursement and technology assessment agencies. Therefore, health economists faced with a situation in which SF-36 data are available but not EQ-5D data, may wish to know whether using one of the algorithms referenced above will give similar utility values similar to those that would have been obtained had the EQ-5D been administered. And, given the choice and this circumstance, they may wish to adopt an algorithm that does replicate the results of the EQ-5D as closely as possible.

Here we address this issue in two ways. First, using a large population survey in which the SF-36 and the EQ-5D were administered, we calculate utility values using the Brazier (Brazier, Roberts, & Deverill 2002) and Lundberg (Lundberg, Johannesson, Isacson, & Borgquist 1999) algorithms, and compare the results with the actual EQ-5D results. Second, we report the results of an analysis in which we estimate directly using two methods the association between SF-36 responses and EQ-5D responses from the same individuals; we then derive an algorithm that can reliably estimate from SF-36 responses the responses and utility values that would have been obtained had the EQ-5D been administered.

Methods

Individuals who had completed the SF-36 and EQ-5D in the Health Survey for England 1996,(Health Survey 1998) were included in the study. The SF-36 individual items and domains were scored conventionally: for each of 8 domains the item scores were coded, summed and transformed onto a scale from 0 (worst possible health state measured by the questionnaire) to 100 (best possible health state). Table 1 reports the 8 domains into which individual items are grouped, and the interpretation of high and low scores in each domain. (The guide to the interpretation of very high or very low scores on the SF-36 is adapted from the definitions provided by Ware and Gandek (Ware & Gandek 1998)).

EQ-5D tariff values were calculated using the results of the British MVA survey (Dolan, Gudex, Kind, & Williams 1996). The Brazier algorithm was based on the most recent published results,(Brazier, Roberts, & Deverill 2002) and the Lundberg algorithm used the reduced form model with time trade-off results as the dependent variable (Lundberg, Johannesson, Isacson, & Borgquist 1999).

Cases were included if the respondent was aged 18 or over and there were no missing items in their SF-36 and EQ-5D responses or in other variables potentially of interest (age, sex, smoking status, socio-economic group, presence of long-standing illness). The analysis was undertaken in two stages: mapping to the EQ-5D ordinal responses, and mapping to the EQ-5D tariff.

Mapping to ordinal EQ-5D responses

In the first part of the analysis, regression analysis is used to explore the association between responses to the SF-36 (again using either individual items or domain summary scores) and responses to each EQ-5D question: that is, whether the respondent indicated
level 1, 2 or 3 on the EQ-5D mobility, self-care, usual activities, pain/discomfort, and anxiety/depression questions. It is then possible to compare actual and predicted responses to each EQ-5D question, and to construct a new tariff from the 5 predicted responses, again using the MVA survey results. In this case, the dependent variables are categorical variables with discrete outcomes. One option would be the use of multinomial logistic regression, an extension of logistic regression providing a set of \(J - 1 \) equations to predict probability of membership in each of \(J \) categories (Nerlove & Press 1973). While the multinomial logit provides unbiased parameter estimates, it is inefficient because it ignores the fact that categorical responses to each EQ-5D questions are ordered. Instead we use ordered or ordinal logistic regression (Zavoina & McElvey 1975). Here we follow expositions by Greene (Greene 1997) and Long (Long 1997). We can consider \(y \) as a measure that provides partial information about the underlying or latent variable \(y^* \) as follows:

\[
y_i = 1 \text{ if } y_i^* \leq \tau_1 \quad (1.1)
\]
\[
y_i = 2 \text{ if } \tau_1 < y_i^* \leq \tau_2 \quad (1.2)
\]
\[
y_i = 3 \text{ if } y_i^* \geq \tau_2 \quad (1.3)
\]

Each \(\tau \) is a parameter representing a cutpoint or threshold separating the categories in the observed variable, and can be estimated according to a structural model where

\[
y_i^* = \sum_{k=1}^{K} \beta_k x_{ki} + \varepsilon_i = Z_i + \varepsilon_i \quad (2)
\]

We therefore estimate the unknown \(\tau \) parameters with \(\beta \), where \(K \) represents the set of measured independent predictors, in this case SF-36 individual responses or domain scores. We assume that the random disturbance term \(\varepsilon \) has a logistic distribution. This gives us

\[
Z_i = \sum_{k=1}^{K} \beta_k X_{ki} \quad (3)
\]

It is then possible to compute \(Z_i \) for each case and calculate the probability that the case falls into each category \(J \), using the estimated \(\varepsilon \) parameters as threshold limits:

\[
P(y = 1) = \frac{1}{1 + \exp(Z_i - \tau_1)} \quad (4.1)
\]
\[
P(y = 2) = \frac{1}{1 + \exp(Z_i - \tau_2)} - \frac{1}{1 + \exp(Z_i - \tau_1)} \quad (4.2)
\]
\[
P(y = 3) = 1 - \frac{1}{1 + \exp(Z_i - \tau_2)} \quad (4.3)
\]
Here, ordered logit was performed in Stata v.7 using the ORDERED LOGIT procedure, and replicated in SPSS with the PLUM procedure.

Mapping to the EQ-5D tariff

In the second part of the analysis, regression analysis was employed to model the relationship between actual EQ-5D tariff values and responses to the SF-36 using either domain summary scores or individual items. The time-trade off valuations that form the basis of the tariff values for the EQ-5D states mean that tariff scores are bounded by 1.0 (the score for full health) when a respondent indicates no problems in any dimension (i.e., 11111 on the EQ-5D survey) (Dolan, Gudex, Kind, & Williams 1996). Population health surveys that have included the EQ-5D indicate that a significant fraction of respondents rate themselves in full health (e.g. 52% of respondents for the Health Survey for England 1996). Another feature of the EQ-5D tariffs is that they can be highly skewed, with some patients recording health states that yield negative tariff values to a minimum of -0.594. Both these features mean that it is inappropriate to employ conventional Ordinary Least Squares analysis. In the following, we focus on deviation of tariff from full health and denote this as M_i which is equal to $(1-U_i)$.

We employ a two part model. In the first part, Logit regression is used to model the probability of the respondent being at full health. More formally probability of a patient having full health is calculated by:

$$\Pr(M_i = 0 \mid X_i) = \frac{\exp(\alpha^j X_i^j)}{1 + \exp(\alpha^j X_i^j)}$$ \hspace{1cm} (5.)

Where M_i is the deviation in tariff values from full-health; X_i a vector of j independent variables the $i = (1..N)$ individuals responding to the survey and α^j is a vector of coefficients.

In the second stage only the deviations from full health are modelled. Two part models typically transform the dependent variable when it is skewed. Adopting this approach we use a Box-Cox transformation to explore alternative models. The transformation is:

$$MT_i = \frac{M_i^\lambda - 1}{\lambda}$$

Linear model are then estimated using maximum likelihood methods and standard statistical test applied to determine an optimal value for λ (i.e. one that produces the highest value of the log likelihood function).

The predicted values for these deviations can then be obtained by:

$$E[M_i \mid M_i > 0] = \beta^j X_i^j$$ \hspace{1cm} (6.)
We test the predictive performance of the non-linear model against a linear alternative.

Comparisons

Having conducted the analyses above, we calculated for each case in the sample the most probable response category for each dimension of the EQ-5D using ordered logit, a predicted tariff by applying the MVA valuations to the set of predicted response categories, and a predicted EQ-5D tariff using the two-part model. We then examined the correspondence between the predicted and actual EQ-5D question responses, and the correspondence between predicted and actual EQ-5D tariffs, by plotting differences, calculating the proportion of predicted tariff values within 5 points of the actual tariffs, and calculating correlation. We also examined the performance of the actual tariff, the predicted tariffs and the utility values derived from the Brazier and Lundberg algorithms in discriminating between individuals reporting the presence or absence of long-standing illness.

Data

We used information from the Health Survey for England 1996, one of a series of annual surveys commissioned by the Department of Health in which a representative sample of adults and children living in private households in England were interviewed to provide information about health and risk factors; in the 1996 survey, the interview schedule included the SF-36 and the EQ-5D (Health Survey 1998). A total of 20,328 cases were accessed, of which 4,404 were dropped as under the age of 18, and a further 3,171 (19.9%) were dropped because of one or more missing data items, giving a final total of 12,753 cases for analysis. Table 2 provides descriptive data for the dataset.

Results

Mapping to ordinal EQ-5D responses

Table 3 reports the ordinal logit results for each of the EQ-5D questions, using the SF-36 domain scores and change in health score as the predictor variables. Model fit statistics indicate that the null hypothesis that all effects of independent variables are zero can be rejected, and the R^2 measure indicates that the model performs fairly well. The coefficients for individual variables in this type of model are not straightforward to interpret (Greene 1997), but the results indicate that the domain scores most likely to be related to EQ-5D questions are generally highly significant, while those least directly related are non-significant: for example, the SF-36 bodily pain domain score is very significantly related to the EQ-5D pain question but not to the EQ-5D anxiety question; the SF-36 role emotional domain score is not significantly related to the EQ-5D mobility, usual activity or pain questions, but is significantly relates to the EQ-5D anxiety question, and so on.

For any individual case in the sample, the coefficients can be used to predict Z_i, as set out in equation 2 above, and this can then be combined with the cutoff parameters to
calculate the probability that the case is in each category of the EQ-5D question. For example, a patient scoring 85, 100, 0, 55.56, 56, 25, 66.67, 62, and 25 respectively on the 8 domains and change-in-health item listed in Table 3 would have a Z_i of -5.61, and using the equations given above (4.1 to 4.3) it can be estimated that their probability of answering 1, 2 or 3 to the EQ-5D anxiety question is 0.18, 0.77 and 0.04 respectively; they would therefore be classified in category 2 – moderately anxious or depressed.

A similar approach was adopted using responses to all 36 individual questions in the SF-36, but with each predictor variable entered as a categorical variable converted into a set of dummy variables for each level. The full sets of coefficients are not reported here for reasons of space, but Table 4 provides summary data on the actual frequency distribution across each EQ-5D question in the survey, and the predicted distribution based on all SF-36 questions and on the domain scores. Looking at the domain score results first, it is evident that the ordered logit procedure correctly places between 80% and 97% of all cases into the category they actually selected (that is, the proportion of cases on the cross-tab diagonal). For the mobility and self-care questions the overall numbers correctly classified are particularly high. However, it is also evident that the proportion of people in category 3 is consistently under-predicted, although the actual numbers involved is small. This is true of all 5 EQ-5D questions, with no category 3 responses predicted at all in the mobility and self-care questions. Finally, Table 4 shows that the improvement obtained by using all SF-36 questions rather than the domain scores as predictor variables is very slight.

Having predicted for each case in the survey a response category for each EQ-5D question, it was possible to calculate a predicted tariff score. Table 5 reports the mean and dispersion statistics for the actual EQ-5D tariffs, the predicted tariffs based on the 8 SF-36 domain scores and on all 36 individual questions, and the estimated utility from the Brazier algorithm and the Lundberg algorithm (reduced form TTO model).

The table shows that the two ordered logit predicted tariffs have a mean value approximately 4 percentage points above the actual tariff, which may reflect the underestimation of category 3 responses. The Brazier utility estimate is approximately 10 percentage points lower than the actual EQ-5D tariff, and the Lundberg algorithm approximately 3 percentage points above the actual tariff. Also of note, the range of the two ordered logit predictions, and in particular the estimate based on SF-36 domain scores, are substantially wider than the Brazier or Lundberg estimates, which give minimum utility values of 0.30 and 0.38 respectively in this sample.

An alternative way of looking at agreement and divergence between these different estimates of utility is given in Figure 1. The actual EQ-5D tariff value is subtracted from the estimated utility level from the two ordered logit models, the Brazier algorithm and the Lundberg algorithm, and the differences are plotted on bar charts. It is immediately evident that the two ordered logit models consistently predict utility values that are close to the actual value: in the case of the ordered logit model using all SF-36 questions as predictors (p1dist), 65% of predictions are within 5 percentage points of the actual value, and for the ordered logit model based on SF-36 domain scores the corresponding figure is
64%. In comparison, the Brazier algorithm produces estimates within 5 percentage points of the actual EQ-5D tariff in only 16% of cases, and the Lundberg algorithm in only 37% of cases.

Finally, we compare the 5 measures of utility in terms of their ability to discriminate between individuals who reported the presence or absence of long-standing illness in a separate standard question administered during the Health Survey for England. In the sample examined here, 5,316 answered “yes” and 7,437 answered “no”. Figure 2 shows the mean utility values for each of these groups according to the 5 measures being considered, and the mean difference in utility, with corresponding confidence intervals. In the Survey, those with long-standing illness scored a mean tariff of 0.75 on their EQ-5D responses, while those without long-standing illness had a mean tariff of 0.93, a difference of 0.18. The ordered logit approach using SF-36 domain scores predicted slightly higher mean scores in both groups (0.81, 0.96) and a mean difference of 0.15, similar to ordered logit using all SF-36 questions. The Brazier algorithm estimated significantly lower utility scores in both groups and a significantly smaller mean difference of 0.10, while the Lundberg algorithm estimated significantly higher utility values than the actual EQ-5D tariff in the group with long-standing illness, and the smallest mean difference of just 0.9.

Mapping to the EQ-5D tariff

Table 6 reports the two-part model for the EQ-5D tariff, using the SF-36 domain scores and change in health score as the predictor variables. The first part reports the results of the Logit model. The null hypothesis that all effects of independent variables are zero can be rejected and the R^2 suggests that the model performs fairly well. The results of the coefficients suggested that all the domain scores have a positive relation with the EQ-5D with highly significant values. Table 6 also report two regression models for the second part. The first model uses ordinary least squares on the untransformed tariff values. In the second, a grid search indicated that optimal value of λ was -0.631 and the regression after applying this transformation is also reported in Table 6. A similar approach was used to model tariff values using individual SF-36 item responses, but again for the sake of brevity these are not reported.

These two-part models were then used to predict a tariff value for each individual in the data set. This involved using (5) to predict probability of an individual being at full health and then we assume if $\Pr(M_i = 0 \mid X_i^f) > 0.5$ then $\hat{M}_i = 0$. The second part of the model uses (6) to estimate \hat{M}_i for any individual whose $\Pr(M_i = 0 \mid X_i^f) > 0.5$. Summary statistics of the predictions are reported in bottom half of Table 5, in the same format as the ordered logit results. The predictions from the linear model are closer to the actual tariff values while the non-linear model predicts tariffs values over a greater range. The predictions of the regression model based on SF-36 individual item responses are slightly closer to the actual mean tariff value and so we focus on these models in the remaining analysis.
The difference between predicted & actual tariffs for the linear model is illustrated in Figure 2a and 2b, again using the same format as used to report ordered logit results. In the case of the linear model that is based on domains 56% of predictions are within 5% of the actual values (see figure 2a), while in the model based on items 59% fell in this range (see figure 2b). Finally the ability of these algorithms to discriminate between the utilities of patients with longstanding illness is illustrated in Figure 3. Both two part models that use linear regression produce a difference that is not significantly different from tariff values.

Discussion

In this paper we have shown that previously published algorithms to obtain utility values from the SF-36 do not necessarily provide results that correspond either with each other or with those obtained from the EQ-5D, and we have set out alternative methods for reliable prediction of EQ-5D responses and utility levels.

We have produced similar results using ordered logit to predict EQ-5D response categories from SF-36 domain scores and thence calculate utilities from these predicted responses, and by using two-part regression models to predict tariffs directly from these domain scores. The ordered logit approach produced a slightly higher proportion of estimated tariffs within 5 points of the actual tariff values, but the two-part models produced estimates of mean tariff and mean difference with respect to long-standing illness that were closer to the actual mean. Both methods performed better in these respects than the Brazier or Lundberg algorithms. Analysts may find both methods useful: the ordered logit approach will indicate the EQ-5D dimensions in which most health gains or losses are concentrated, and the two-part model will provide mean tariff estimates closely approximating those the EQ-5D would have provided.

We found that the ordered logit approach slightly under-estimated the number of respondents likely to indicate level 3 on EQ-5D responses, and this in turn resulted in a slight (4%) over-prediction of utility levels. This may be a manifestation of recognised floor effects in the SF-36, especially in the role physical and role emotional domains.

We noted earlier and wish to restate that we do not consider the EQ-5D to be a gold standard, and we also recognise that previously published algorithms did not necessarily have the objective of producing results consistent with the EQ-5D. However, given the widespread use of the EQ-5D and its high degree of support amongst technology appraisal and reimbursement agencies, an algorithm that can produce from the SF-36 utility estimates consistent with the EQ-5D should be a useful addition to the armamentarium of health economists.

There are a number of areas in which we are currently extending the work reported here. First, we are examining the effect of adding a small number of other readily available independent variables to our models, to reduce unexplained variance and further improve prediction. In particular, we are looking at the impact of including age and sex. Second, we are examining the model specification through the use of additional explanatory
variables constructed from interactions between SF-36 domain scores, in recognition that
the values taken by these domain scores are unlikely to be independent. Third, we are
applying the approach to other datasets, in particular the 2000 Medical Expenditure Panel
Study, in which SF-12 and EQ-5D responses were obtained simultaneously from a large
US population sample. Fourth, we are testing the validity of the approach in trial-based
datasets, to make blinded predictions of actual EQ-5D responses, mean utility levels and
mean differences by allocation. Fifth, we are looking at ways of dealing with the apparent
floor effects in domains of the SF-36, to further improve the mean tariff values we obtain
with the ordered logit approach. Finally, we are preparing easily accessible versions of
our algorithms in Microsoft Excel, SPSS and STATA, which will be downloadable from
the HERC website at the University of Oxford at some stage in the future. We will also
provide reference health profiles and results so that users can ensure correct
implementation of these algorithms.

In conclusion, for analysts who might wish to derive from SF-36 responses estimates of
health states and utility values that will approximate to those the EQ-5D would have
given had it been administered, we have demonstrated that our direct mapping method
provides reliable and accurate results: the predicted responses and utility values will
 correspond quite closely to the values that would have been obtained had the EQ-5D been
used, and will almost certainly correspond more closely to EQ-5D utilities than other
published algorithms.
<table>
<thead>
<tr>
<th>Dimension title and Description</th>
<th>No. of items</th>
<th>Low Scores</th>
<th>High Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Functioning (PF)</td>
<td>10</td>
<td>Limited a lot in performing types of physical activities including bathing and dressing</td>
<td>Performs all activities without limitations due to health</td>
</tr>
<tr>
<td>Role Physical (RP)</td>
<td>4</td>
<td>Problems with work or other daily activities as a result of physical health</td>
<td>No problems with work or other daily activities due to physical health</td>
</tr>
<tr>
<td>Bodily Pain (BP)</td>
<td>2</td>
<td>Severe and limiting bodily pain</td>
<td>No pain or limitations due to pain</td>
</tr>
<tr>
<td>Energy / Vitality (VT)</td>
<td>4</td>
<td>Feels tired and worn down all the time</td>
<td>Feels full of energy all the time</td>
</tr>
<tr>
<td>Social Functioning (SF)</td>
<td>2</td>
<td>Extreme and frequent interference with normal social activities due to physical or emotional problems</td>
<td>Performs normal activities without interference due to physical or emotional problems</td>
</tr>
<tr>
<td>Role Limits Emotional (RE)</td>
<td>3</td>
<td>Problems with work or other daily activities as a result of emotional problems</td>
<td>No problems with work as a result of emotional problems</td>
</tr>
<tr>
<td>Mental Health (MH)</td>
<td>5</td>
<td>Feelings of nervousness and depression all of the time</td>
<td>Feels peaceful, happy and calm all of the time</td>
</tr>
<tr>
<td>General Health (GH)</td>
<td>5</td>
<td>Believes personal health is poor and likely to get worse</td>
<td>Believes personal health is excellent</td>
</tr>
<tr>
<td>Physical component summary</td>
<td>35</td>
<td>Limitations in self-care, physical, social, and role activities, severe bodily pain, frequent tiredness</td>
<td>No physical limitations, disabilities, or decrements in well-being and high energy level</td>
</tr>
<tr>
<td>Mental component summary</td>
<td>35</td>
<td>Frequent psychological distress, social and role disability due to emotional problems</td>
<td>Frequent positive affect, absence of psychological distress and emotional problems</td>
</tr>
</tbody>
</table>

Table 2: Descriptive data from Health Survey for England 1996 (n=12,753)

<table>
<thead>
<tr>
<th>Age last birthday Mean</th>
<th>S. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>46.6</td>
<td>17.2</td>
<td>18</td>
</tr>
</tbody>
</table>

SF-36 domain scores:
- sf36pfs = physical functioning 83 25 0 100
- sf36rps = role physical 81 35 0 100
- sf36res = role emotional 85 31 0 100
- sf36scs = social functioning 76 20 0 100
- sf36mhs = mental health 76 17 0 100
- sf36evs = energy/vitality 63 20 0 100
- sf36bps = bodily pain 80 25 0 100
- sf36hps = general health perception 70 21 0 100
- sf36chs Change in health 51 17 0 100
- EQ-5D tariff 0.85 0.22 -0.36 1.00

Sex: 47.3% men, 52.3% women
Smoking status: 28.4% current, 26.5% ex, 45.2% never
Social class: Professional 4.5%, Managerial technical 27.2%, skilled nonmanual 25.2%, skilled manual 19.7%, semi-skilled manual 16.7%, unskilled manual 6.3%, other 0.3%
Table 3: Ordered logit SF-36 domain score coefficients and significance for each EQ-5D question, using Health Survey for England data

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Sig.</th>
<th>Estimate</th>
<th>Sig.</th>
<th>Estimate</th>
<th>Sig.</th>
<th>Estimate</th>
<th>Sig.</th>
<th>Estimate</th>
<th>Sig.</th>
<th>Estimate</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 cutoff</td>
<td>-4.612</td>
<td>0.000</td>
<td>-2.44</td>
<td>0.000</td>
<td>-5.727</td>
<td>0.000</td>
<td>-7.124</td>
<td>0.000</td>
<td>-7.071</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Level 2 cutoff</td>
<td>3.147</td>
<td>0.000</td>
<td>1.082</td>
<td>0.000</td>
<td>-1.386</td>
<td>0.000</td>
<td>-1.678</td>
<td>0.000</td>
<td>-2.398</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>sf36pfs - physical functioning</td>
<td>-0.052</td>
<td>0.000</td>
<td>-0.053</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.000</td>
<td>-0.018</td>
<td>0.000</td>
<td>0.001</td>
<td>0.520</td>
<td></td>
</tr>
<tr>
<td>sf36rps - role physical</td>
<td>-0.007</td>
<td>0.000</td>
<td>-0.009</td>
<td>0.000</td>
<td>-0.017</td>
<td>0.000</td>
<td>0.002</td>
<td>0.017</td>
<td>0.005</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>sf36res - role emotional</td>
<td>0.002</td>
<td>0.152</td>
<td>0.006</td>
<td>0.000</td>
<td>-0.001</td>
<td>0.572</td>
<td>-0.001</td>
<td>0.395</td>
<td>-0.012</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>sf36scs - social functioning</td>
<td>-0.001</td>
<td>0.571</td>
<td>-0.014</td>
<td>0.000</td>
<td>-0.012</td>
<td>0.000</td>
<td>0.01</td>
<td>0.000</td>
<td>-0.012</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>sf36mhs - mental health</td>
<td>0.01</td>
<td>0.000</td>
<td>-0.011</td>
<td>0.001</td>
<td>0.002</td>
<td>0.396</td>
<td>0.002</td>
<td>0.224</td>
<td>-0.078</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>sf36evs - energy/vitality</td>
<td>-0.003</td>
<td>0.220</td>
<td>0.001</td>
<td>0.827</td>
<td>-0.011</td>
<td>0.000</td>
<td>-0.003</td>
<td>0.069</td>
<td>-0.006</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>sf36bps - bodily pain</td>
<td>-0.024</td>
<td>0.000</td>
<td>-0.01</td>
<td>0.000</td>
<td>-0.019</td>
<td>0.000</td>
<td>-0.069</td>
<td>0.000</td>
<td>-0.001</td>
<td>0.527</td>
<td></td>
</tr>
<tr>
<td>sf36bps - gen. health percep.</td>
<td>-0.014</td>
<td>0.000</td>
<td>-0.013</td>
<td>0.000</td>
<td>-0.016</td>
<td>0.000</td>
<td>-0.022</td>
<td>0.000</td>
<td>-0.014</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>sf36chs - change in health</td>
<td>-0.001</td>
<td>0.525</td>
<td>0.006</td>
<td>0.022</td>
<td>-0.003</td>
<td>0.132</td>
<td>-0.003</td>
<td>0.062</td>
<td>-0.003</td>
<td>0.089</td>
<td></td>
</tr>
</tbody>
</table>

Model fit Chi-2: 5657, 2661, 6463, 7547, 5509
Model fit sig.: 0.000, 0.000, 0.000, 0.000, 0.000
R²: 0.500, 0.515, 0.476, 0.394, 0.373

Table 4: Frequency distribution of actual EQ-5D response categories and predicted categories using ordered logit, Health Survey for England data

<table>
<thead>
<tr>
<th>Actual category distribution (%)</th>
<th>Predicted category distribution (%)</th>
<th>Overall % correctly categorised</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Using 8 SF-36 domain scores as predictors:

<table>
<thead>
<tr>
<th>Mobility</th>
<th>84.1</th>
<th>15.8</th>
<th>0.1</th>
<th>87.4</th>
<th>12.6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-care</td>
<td>95.3</td>
<td>4.4</td>
<td>0.4</td>
<td>96.7</td>
<td>3.3</td>
<td>0</td>
</tr>
<tr>
<td>Usual activities</td>
<td>82.5</td>
<td>15.2</td>
<td>2.3</td>
<td>86.5</td>
<td>12.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Pain/discomfort</td>
<td>65.3</td>
<td>31.6</td>
<td>3.1</td>
<td>71.8</td>
<td>26.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Anxiety/Depression</td>
<td>78.4</td>
<td>20.1</td>
<td>1.6</td>
<td>84.7</td>
<td>14.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Overall % correctly categorised</td>
<td>91.2</td>
<td>96.9</td>
<td>88.9</td>
<td>80.0</td>
<td>84.7</td>
<td></td>
</tr>
</tbody>
</table>

Using all 36 SF-36 questions as predictors:

<table>
<thead>
<tr>
<th>Mobility</th>
<th>84.1</th>
<th>15.8</th>
<th>0.1</th>
<th>86.7</th>
<th>13.3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-care</td>
<td>95.3</td>
<td>4.4</td>
<td>0.4</td>
<td>96.0</td>
<td>4.0</td>
<td>0</td>
</tr>
<tr>
<td>Usual activities</td>
<td>82.5</td>
<td>15.2</td>
<td>2.3</td>
<td>86.0</td>
<td>13.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Pain/discomfort</td>
<td>65.3</td>
<td>31.6</td>
<td>3.1</td>
<td>68.4</td>
<td>29.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Anxiety/Depression</td>
<td>78.4</td>
<td>20.1</td>
<td>1.6</td>
<td>83.1</td>
<td>16.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Overall % correctly categorised</td>
<td>92.4</td>
<td>97.3</td>
<td>89.4</td>
<td>81.3</td>
<td>85.3</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Actual EQ-5D tariff and estimated quality of life tariffs using ordered logit & two part models, Brazier algorithm and Lundberg algorithm (n=12,753), Health Survey for England data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual EQ-5D tariff</td>
<td>0.85</td>
<td>0.22</td>
<td>1.36</td>
<td>-0.36</td>
<td>1</td>
</tr>
</tbody>
</table>

Tariffs based on predicted item responses using ordered logit

| Predicted tariff 2 | 0.9 | 0.19| 1.24 | -0.24| 1 |
| Predicted tariff 1 | 0.89 | 0.16| 0.97 | 0.03 | 1 |

Tariffs estimated directly using two part models

Predicted tariff 3	0.85	0.17	0.89	0.11	1
Predicted tariff 1	0.85	0.20	1.20	-0.20	1
Predicted tariff 5	0.87	0.17	1.19	-0.19	1
Predicted tariff 6	0.86	0.02	1.24	-0.24	1

Brazier utility estimate | 0.75 | 0.12| 0.62 | 0.30 | 0.92 |
Lundberg utility estimate | 0.88 | 0.11| 0.62 | 0.38 | 1 |

Table 6: Two part model SF-36 domain score coefficients and significance for each EQ-5D question, using Health Survey for England data

<table>
<thead>
<tr>
<th></th>
<th>Probit Model</th>
<th>Linear Regression</th>
<th>Non-liner Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Sig.</td>
<td>Estimate</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.529</td>
<td>0.119</td>
<td>0.892</td>
</tr>
<tr>
<td>sf36pfs – physical functioning</td>
<td>0.005</td>
<td>0.000</td>
<td>-0.002</td>
</tr>
<tr>
<td>sf36rps - role physical</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>sf36res - role emotional</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>sf36scs - social functioning</td>
<td>0.002</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>sf36mhs – mental health</td>
<td>0.006</td>
<td>0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>sf36evs - energy/vitality</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>sf36bps - bodily pain</td>
<td>0.011</td>
<td>0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td>sf36bps – gen. health percep.</td>
<td>0.003</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>sf36chs - change in health</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

Model fit Chi-2 | 455 | 0.528 | 0.539
Model fit sig. | 0 | 0 | 0.000

Figure 1 a-d: Distribution of differences (predicted minus actual) between actual Eq-5D tariffs and predicted tariffs using ordered logit with SF-36 questions (P1dist), ordered logit with SF-36 domains (p2dist), Brazier algorithm (Brazdist) and Lundberg algorithm (Lunddist).

- **P1dist**
 - Mean: 0.0394
 - Std. Dev.: 0.13845
 - N = 12,753

- **p2dist**
 - Mean: 0.0411
 - Std. Dev.: 0.14211
 - N = 12,753

- **brazdist**
 - Mean: -0.1028
 - Std. Dev.: 0.15988
 - N = 12,753

- **lunddist**
 - Mean: 0.0298
 - Std. Dev.: 0.17367
 - N = 12,753
Figure 2 a-b: Distribution of differences (actual minus predicted) between actual Eq-5D tariffs and predicted tariffs using two-part models with SF-36 8 domains (a) and items (b).
Figure 2: Mean (95% c.i.) utility values for individuals with (n=5,316) or without (n=7,437) long-standing illness, by actual EQ-5D tariff, ordered logit domain score and ordered logIT SF-36 individual question predictions, Brazier algorithm and Lundberg algorithm.
References

